Симметрия и асимметрия (38376)

Посмотреть архив целиком

Прошли тысячелетия, прежде чем человечество в ходе своей
общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде
всего в природе две тенденции: наличие строгой упорядоченности,
соразмерности, равновесия и их нарушения.

Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на
деревьях, лепестков, цветов, семян растений и отобразили эту
упорядоченность в своей практической деятельности, мышлении
и искусстве.

Понятие «симметрия» употреблялось в двух значениях. В одном
смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с
помощью которого они объединяются в целое. Второй смысл этого
слова равновесие.

Греческое слово  означает однородность, соразмерность,
пропорциональность, гармонию.

Познавая качественное многообразие проявлений порядка и
гармонии в природе, мыслители древности, особенно греческие
философы, пришли к выводу о необходимости выразить симметрию
и в количественных отношениях, при помощи геометрических
построений и чисел.

Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека
своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства
всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства.

Следует обратить внимание и на учение Пифагора о гармонии.
Известно, что если уменьшить длину струны или флейты вдвое,
тон повысится на одну октаву. Уменьшению в отношении 3:2 и
4:3 будут соответствовать интервалы квинта и кварта. То, что важнейшие гармонические интервалы получаются при помощи отношений чисел 1, 2 и 3, 4, пифагорейцы использовали для своих мистических выводов о том, что «все есть число» или «все упорядочивается в соответствии с числами». Сами эти числа 1, 2, 3, 4 составляли
знаменитую «тетраду». Очень древнее изречение гласит: «Что есть
оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма
сирен». Геометрическим образом тетрады является треугольник из
десяти точек, основание которого составляют 4 точки плюс 3,
плюс 2, а одна находится в центре.

В геометрии, механике всюду, где мы имеем дело с отрезками
прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений
между предметами в объективном мире. Чтобы пояснить это положение, можно выбрать на данной прямой АВ любую третью точку С.
Таким образом, совершается переход от единства к двойственности,
и мысль этим самым приводит к понятию пропорции. Следует
подчеркнуть, что соотношение есть количественное сравнение двух
однородных величин, или число, выражающее это сравнение. Про-
порция есть результат согласования или равноценности двух или нескольких соотношений. Следовательно, необходимо наличие
не менее трех величин (в рассматриваемом случае прямая и два
ее отрезка) для определения пропорции. Деление данного отрезка
прямой АВ путем выбора третьей точки С, находящейся между
А и В, дает возможность построить шесть различных возможных
соотношений:


a:b ; a:c ; b:a ; b:c ; c:a ; c:b


при условии отметки соответствующей длины отрезков прямой бук-
вами «а», «b», «с» и применения к данной длине любой системы
мер. Проанализировав возможные случаи деления отрезка АВ на
две части, мы приходим к выводу, что отрезок можно делить на:



1) две симметрические части a=b; 2) a:b = c:a



Так как c = a + b, то


a/b = (a + b)/a ;


( (a + b)/a очевидно, превосходит единицу); дело обстоит так же и в отношении а/b; значит, «а» превосходит «b» и точка «С» стоит ближе к В, чем
к A.

Это соотношение a:b = c:a или AC/CB = AB/AC

может быть выражено следующим образом: длина АВ была разделе-
на на две неравные части таким образом, что большая из ее частей
относится к меньшей, как длина всего отрезка АВ относится

к его большей части:


3) a/b = b/c равноценно a/b = b/(a + b).


В этом случае «b» больше «а»; точка С ближе к А, чем к В, но отношения те же, что и во втором случае,

Рассмотрим равенство


a/b = c/a = (a + b)/a,


при котором отрезок АС длиннее отрезка СВ. Это общее простейшее
деление отрезка прямой АВ, являющееся логическим выражением
принципа наименьшего действия. Между точками А и В имеется
лишь одна точка C, поставленная таким образом, чтобы длина отрез-
ков АВ, СВ и АС соответствовала принципу простейшего деления;
следовательно, существует только одно числовое выражение, соответствующее отношению a/b. Эту же задачу можно решить путем гео-
метрического построения, известного как деление прямой на две
неравные части таким образом, чтобы соотношение меньшей и боль-
шей частей равнялось соотношению большей части и суммы длин
обеих частей, а это и соответствует формуле


a/b = (a + b)/a,

которую называют «божественная пропорция», «золотое сечение» т.д.

Изучение объективной реальности и задачи практики привели к возникновению наряду с понятием симметрия и понятия асимметрии, которое нашло одно из своих первых количественных выражений в так назыываемом золотом делении, или золотой пропорции.

Пифагор выразил «золотою пропорцию» соотношением:


А:Н = R:B,


где Н и R суть гармоническая и арифметическая средние между
величинами А и В.


R = (A + B)/2; H = 2AB/ (A + B).


Кеплер первый обращает вни-
мание на значение этой пропорции в ботанике и называет ее
sectio divina «божественное сечение»; Леонардо да Винчи назы-
вает эту пропорцию «золотое сечение».

Проведем некоторые преобразования вышеприведенной формулы.
Прежде всего разделим на «b» оба элемента второго члена этого
равенства и обозначим


a/b = x; тогда a/b = (a/b + 1)/(a/b),


или x2 = x + 1


Отсюда


x2 - x – 1= 0


Корнями этого уравнения являются


х = 1 5/2 = 1,61803398 .

45

2

Это число обладает характернейшими особенностями. Обозначим это число буквой Ф.


Ф = (5 + 1)/2 = 1,618…; 1/Ф = (5 – 1) /2 = 0,618…;


Ф2 = -(5 + 3)/2 = 2,618…

Оказывается, что геометрическая прогрессия, в основании которой
лежит Ф, обладает следующей особенностью: любой член этого
ряда равен сумме двух предшествующих ему членов. Ряд 1, Ф, Ф2,
Ф3, ..., Фn является одновременно и мультипликативным, и аддитив-
ным, т. е. одновременно причастен природе геометрической прогрес-
сии и арифметического ряда. Следует обратить внимание на то, что
формула.

Ф = (5 + 1)/2

выражает простейшее асимметрическое деление прямой АВ. С этой
точки зрения данное отношение является «логической» инвариан-
той, проистекающей из счислений отношений и групп. Пеано,
Бертран Рассел и Кутюра показали, что исходя из принципа тождественности можно вывести из этих отношений и групп принципы чистой математики.

Любопытно, что древние архитекторы уже пользовались приемом
асимметричного деления. Так, например, стороны пирамиды Фараона
Джосера относятся друг к другу, как 2: /5, а ее высота относится к большей стороне, как 1: 2.

Интересно, что на сохранившемся до наших дней изображении
древнеегипетского зодчего Хисеры (жил свыше 4,5 тыс. лет тому
назад) имеются две палки очевидно, эталоны меры. Их длины
относятся, как 1: 1/5, т. е. как меньшая сторона прямоугольного
треугольника к гипотенузе.

Архитектор И. Шевелев рассматривая пропорции древнерусской
архитектуры (церковь Покрова на Нерли и храм Вознесения в
Коломенском) привел убедительные данные, свидетельствующие о
том, что русские архитекторы также пользовались пропорциями,
связанными с «золотым сечением».

Пропорция «золотого сечения» дает возможность архитекторам
находить наиболее удачные, красивые, гармоничные сечения целого
и частей, единство разнообразного; в конечном счете они пользуются сочетанием принципов симметрии и асимметрии,

Если в период Возрождения внимание ученых и преподавателей
искусства было приковано к «золотому сечению», то впоследствии
оно постепенно падало, и только в 1855 г. немецкий ученый Цейзинг
вновь ввел его в обиход в своем труде
«Эстетические исследования». В нем он писал, что для того, чтобы
целое, разделенное на две неравные части, казалось прекрасным
с точки зрения формы, между меньшей и большей частями должно
быть то же отношение, что и между большей частью и целым,

Применение «золотого сечения» есть лишь частный случай общего закона периодической повторяемости одной и той же пропорции
в совокупности, в деталях целого,


Случайные файлы

Файл
555.doc
90053.rtf
pb_03-182-98.doc
116278.rtf
143385.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.