Билеты разных лет (Ответы на билеты)

Посмотреть архив целиком

Билет 1



Лекция 22. Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами.


Система линейных дифференциальных уравнений с постоянными коэффициентами может быть записана в виде


, где , (векторная форма записи)

или

(покоординатная форма записи).

Будем искать решение системы в виде .

Подставляя в уравнение системы, получаем

.

Получено уравнение для определения соответствующего собственному значению собственного вектора линейного оператора с матрицей . Система уравнений

или

имеет ненулевое решение только, когда определитель системы равен нулю, т.е.

.

Это – характеристическое уравнение системы линейных дифференциальных уравнений с постоянными коэффициентами. В развернутом виде его можно записать так:

.

Характеристическое уравнение представляет собой алгебраическое уравнение - го порядка относительно . Из основной теоремы высшей алгебры известно, что оно имеет ровно корней. Часть корней может быть действительными корнями, часть - комплексными, но комплексные корни встречаются только парами комплексно-сопряженных корней. Это следует из действительности коэффициентов характеристического уравнения и теорем Виета.

  1. Рассмотрим случай, когда все собственные значения линейного оператора с матрицей (или все характеристические числа матрицы , что одно и то же) действительны и различны.

Из линейной алгебры известно, что действительным различным собственным значениям соответствуют линейно независимые собственные векторы , которые можно определить по собственным значениям из системы уравнений

или .

В развернутом виде эти уравнения для можно записать в виде

.

Теперь решения системы линейных однородных уравнений с постоянными коэффициентами будут

.

Проверим, что решения являются линейно независимыми. Составим определитель Вронского

, так как векторы линейно независимы и определитель из координат этих векторов отличен от нуля. Так как определитель Вронского отличен от нуля, то полученные решения линейно независимы. Так как этих решений ровно n, то они составляют фундаментальную систему решений. Следовательно, общее решение системы линейных однородных уравнений может быть записано в виде

.

Пример. , ,


,

,


Билет 2



Лекция 21. Системы линейных дифференциальных уравнений.


Неоднородную систему линейных дифференциальных уравнений можно записать в виде

.

Однородную систему линейных дифференциальных уравнений можно записать в виде

.

Все теоремы для линейных систем аналогичны соответствующим теоремам для линейных дифференциальных уравнений высших порядков. Этого и следовало ожидать, так как система дифференциальных уравнений сводится к дифференциальному уравнению высшего порядка.


Теоремы о свойствах решений однородной и неоднородной системы.


Если - решения однородной системы, то - решения однородной системы.

Если - решения однородной и неоднородной систем, то - решение неоднородной системы.

Если - решения неоднородной системы, то - решение однородной системы.


Доказательство.

,


билет 3



Любые n линейно независимых решений однородной системы представляют собой базис в пространстве решений и называются фундаментальной системой решений однородной системы.

Матрица , составленная из этих решений , называется фундаментальной матрицей однородной системы.


Теорема о структуре общего решения однородной системы.


Общее решение однородной системы представляет собой линейную комбинацию решений фундаментальной системы решений.

.

Доказательство. Проверим, что является общим решением, исходя из определения общего решения.