Теория пары снимков (25122)

Посмотреть архив целиком

Теория пары снимков


1. Формулы связи координат точек местности и их изображений на тереопаре снимков (прямая фотограмметрическая засечка)


На рис.1 показана стереопара снимков Р1 и Р2, на которых точка местности М изобразилась соответственно в точках m1 и m2. Будем считать, что элементы внутреннего и внешнего ориентирования снимков известны.


Рис.1 .


Выведем формулы связи координат точек местности и координат их изображений на стереопаре снимков.

Из рис.1 следует, что векторы определяют соответственно положение точки местности М и центра проекции S1 снимка Р1 относительно начала системы координат объекта OXYZ. Вектор определяет положение центра проекции S2 снимка Р2 относительно центра проекции S1.

Векторы определяют положение точек m1 и М относительно центра проекции S1. Векторы определяют положение точек m2 и М относительно центра проекции S2.

Из рис.1 следует, что


(1 )


Так как векторы коллинеарны, то


; ( 2)


где N – скаляр.

С учетом ( 2) выражение (1.8.1) будет иметь вид


. ( 3)


В координатной форме выражение (1.7.3) будет иметь вид


; ( 4)


где X1’,Y1’,Z1’ –координаты вектора в системе координат объекта OXYZ.


.


Найдем значение N, входящее в выражение ( 4). Из рис.1 следует, что

;


или с учетом (2)


. ( 5)


Так как векторы коллинеарны, то их векторное произведение


. ( 6)


С учетом (5) выражение ( 6) можно представить в виде


;


Или


. ( 7)


В координатной форме выражение (7) имеет вид



или

, ( 8),


где:

- орты, совпадающие с осями координат X,Y,Z системы координат объекта OXYZ;

BX, BY, BZ, X1’, Y1’, Z1’, X1’, Y1’, Z1’ – координаты векторов в системе координат объекта OXYZ.


,


где i – номер снимка, а


. (9)


Так как векторы коллинеарны ( так как векторы компланарны), значение N можно найти как отношение их модулей, то есть


; (10)


В координатной форме выражение (10) с учетом (8) имеет вид


; (11)


У коллинеарных векторов отношение их координат равно отношению их модулей, поэтому можно записать, что:


Таким образом, если известны элементы внутреннего и внешнего ориентирования стереопары снимков и измерены на этих снимках координаты соответственных точек x1,y1 и x2,y2, то сначала надо определить по одной из формул ( 12)-( 14) значение скаляра N, а затем по формуле ( 4) вычислить координаты точки местности X,Y,Z.


2. Формулы связи координат точек местности и координат их изображений на стереопаре снимков идеального случая съемки


В идеальном случае съемки угловые элементы ориентирования снимков стереопары 1=1=1=2=2=2=0, а базис фотографирования параллелен оси Х системы координат объекта OXYZ.

В этом случае координаты базиса будут равны BX=B, BY=BZ=O (B-модуль ).

Примем, что , то есть начало системы координат объекта OXYZ совмещено с точкой S1), f1=f2=f, a x0i=y0i=0.

Так как угловые элементы ориентирования снимков равны нулю, то


,

а ,


где i – номер снимка.

При этом выражение (1 .13) примет вид


, (1)


а выражение (1 .4), которое мы представим в виде



будет иметь вид


, (2)


а с учетом ( 1)


. (3)


Так как из третьего уравнения выражения (3) следует, что


,


то формулы связи координат (3) можно представить в виде


(4)


3. Определение координат точек местности по стереопаре снимков методом двойной обратной фотограмметрической засечки


Для определения координат точек местности по стереопаре снимков методом прямой фотограмметрической засечки необходимо, чтобы были известны элементы внешнего ориентирования снимков. В большинстве случаев практики их значения не известны. В этом случае определение координат точек местности по стереопаре снимков выполняют методом двойной обратной фотограмметрической засечки.

Решение задачи по этому методу выполняется в следующей последовательности:

  1. Определяют элементы взаимного ориентирования снимков. Пять элементов взаимного ориентирования снимков определяют взаимную угловую ориентацию стереопары снимков и базиса фотографирования. Для их определения необходимо измерить не менее пяти соответственных точек на стереопаре снимков;

  2. Строят фотограмметрическую модель объекта по измеренным на стереопаре снимков координатам изображений соответственных точек и значениям элементов взаимного ориентирования снимков. Построенная модель подобна сфотографированному объекту, но имеет произвольный масштаб и произвольно расположена и ориентирована относительно системы координат объекта;

  3. Определяют элементы внешнего ориентирования фотограмметрической модели по опорным точкам. Эти семь элементов определяют масштаб модели, ее положение и ориентацию относительно системы координат объекта. Для их определения достаточно трех опорных точек, не лежащих на одной прямой. По значениям элементов внешнего ориентирования фотограмметрической модели и элементов взаимного ориентирования можно определить элементы внешнего ориентирования стереопары снимков;

  4. По координатам точек, определенных в системе координат модели, и элементам внешнего ориентирования модели определяют координаты точек в системе координат объекта.


4. Условие, уравнения и элементы взаимного ориентирования снимков


На рис. 1 представлена стереопара снимков Р1 и Р2 в положении, которое они занимали в момент фотографирования.

Любая пара соответственных лучей в этом случае пересекается в точке М местности и лежит в плоскости, проходящей через базис фотографирования (базисной плоскости).

Очевидно, что в этом случае векторы , лежащие в базисной плоскости, компланарны.


Рис. 1


Как известно из аналитической геометрии, смешанное произведение компланарных векторов равно нулю.


. ( .1)


Условие компланарности в координатной форме имеет вид:


. ( 2)


В уравнении ( 2) координаты векторов в системе координат фотограмметрической модели ОМХМYMZM, в общем случае произвольно расположенной и ориентированной.

В дальнейшем эту систему координат будем называть просто системой координат модели.

Условие ( 2) связывает между собой только направления векторов и выполняется при любых значениях их модулей. Поэтому значение модуля вектора можно выбрать произвольно. Направление вектора определяется двумя независимыми величинами. В качестве этих величин можно выбрать координаты bz и bу вектора , коллинеарного вектору , задав величину координаты bx произвольно.

В частном случае величину bx можно выбрать равной 1.

При этом направление вектора будут определять величины:


и .


Выражение (2) в этом случае будет иметь вид:


( 3)


В уравнении (3)


,


где i – номер снимка, а А’1 – ортогональная матрица, элементы aij которой являются функциями угловых элементов ориентирования i-го снимка i’,i’,i’ относительно системы координат модели ОМХМYMZM.

В выражении (3), которое является уравнением взаимного ориентирования в общем виде, куда кроме координат соответственных точек, измеренных на стереопаре снимков, и элементов внутреннего ориентирования входят 8 параметров by, bz, 1’, 1’, 1’, 2’, 2’, 2’, которые определяют угловую ориентацию базиса фотографирования и стереопары снимков относительно системы координат модели ОМХМYMZM.

Причем параметры 1’ и 2’ определяют поворот снимков стерепары вокруг оси ХМ, параметры bz, 1’, 2‘ – поворот базиса фотографирования и стереопары снимков вокруг оси YM, а параметры by, 1’, 2 – поворот базиса фотографирования и стереопары снимков вокруг оси ZM.

Однако, из этих 8 параметров только 5 определяют взаимную угловую ориентацию базиса фотографирования и стереопары снимков.

Условие (3) выполняется при любой ориентации системы координат модели ОМХМYMZM. Следовательно, ее можно ориентировать таким образом, чтобы 3 из 8 параметров стали равны нулю.

Очевидно, что в общем случае можно сделать равным нулю только один из параметров, входящих в три группы параметров:


  • 1’, 2’;

  • bz, 1’, 2‘;

  • by, 1, 2.

Таким образом, в качестве элементов взаимного ориентирования можно выбрать любую комбинацию из восьми параметров by, bz, 1’, 1’, 1’, 2’, 2’, 2’, кроме комбинаций, в которые одновременно входят две тройки параметров bz, 1’, 2‘ и by, 1’, 2’, а также пара параметров 1’ и 2’.

Рассмотрим наиболее распространенные системы элементов взаимного ориентирования:

Система 1’, 1’, 2’, 2’, 2. Если принять при этом, что by=bz= 1’=0, то уравнение (3) имеет вид:


. ( 4)

Система by, bz, 2’, 2’, 2’. Если при этом принять, что 1’= 1’= 1 =0, то уравнение (3) будет иметь вид:


; ( 5)


так как .


Комментарий. 3 оставшихся из 8 параметров после выбора 5 элементов взаимного ориентирования задают ориентацию системы координат модели ОМХМYMZM. Например, выбрав систему элементов взаимного ориентирования by, bz, 2’, 2’, 2’ и приняв, что 1’= 1’= 1’ =0, мы таким образом задаем систему координат модели ОМХМYMZM, которой параллельны осям x, y, z системы координат первого снимка стереопары S1x1y1z1. В общем случае значения трех параметров можно задавать произвольно.


Случайные файлы

Файл
70423.rtf
70171.rtf
131270.rtf
129588.rtf
93166.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.