Применимость петрологии к разведке месторождений (25073)

Посмотреть архив целиком













Применимость петрологии к разведке месторождений


Введение


Для большей детальности исследования минералов и текстур и ответа на специфические вопросы о разведуемом месторождении, чем можно было бы провести в полевых условиях, могут быть использованы различные петрологические методы.


Петрография


Изучение минералогического состава пород проводится с использованием шлифов или полированных тонких разрезов. Это является основным «позвоночником» любого петрографического исследования. Целью этих исследований являются:

  • Первичная литология. Она помогает в геологическом картировании, позволяет определять структурные отношения и может раскрыть степень литологического контроля рудной минерализации.

-Вторичная минералогия. Эти определения необходимы для определения химического состава и температуры гидротерм, ответственных за гидротермальные изменения (и рудную минерализацию), с их помощью можно использовать известные интервалы стабильности вторичных минералов. Они могут также помочь в интерпретации истории месторождения, в особенности, когда присутствуют неравновесные минеральные комплексы, которые свидетельствуют о нескольких эпизодах гидротермальных изменений и/или рудной минерализации.

  • Текстурные соотношения. Текстурные взаимоотношения вводят вторичную минералогию в контекст времени и пространства. Можно выделить эпизоды гидротермальных изменений и образования жил, как и когда они связаны с присутствующими литологическими разностями. Эти исследования приводят к палеогидрологическим реконструкциям.

  • Свидетельства тектонизма и других событий, происходивших одновременно с рудообразованием: образование разломов и брекчий, внедрение даек и т.д. Гидротермальное брекчирование может быть непосредственно связано с рудной минерализацией. Следовательно, точная идентификация таких характеристик является важным шагом в понимании процессов рудообразования.


Минераграфия


Минераграфия использует тонкие полировки или специально подготовленные полированные напыления. Она может быть проведена на пластинах, приготовленных для исследования флюидных включений. Минераграфия определяет минералы и текстурные соотношения непрозрачных фаз, которые представлены большинством самых обычных рудных минералов. Эти исследования дополняют другие методы по изучению вторичных минералов, в большинстве случаев для тех же целей. Это особенно важно, когда происходит определение парагенезисов рудной минерализации в рамках процессов, связанных с гидротермальными изменениями и образованием жил.

Минераграфия позволяет исследовать реальное местонахождение ценных рудных фаз, например, минералогические и текстурные взаимоотношения золота можно наблюдать непосредственно. Эти данные могут быть ценными при разведке, при определении происхождения месторождения и особенно для металлургии. Влияние супергенного обогащения может быть также показано.


Анализ тяжелых металлов


Петрографический анализ проб тяжелых металлов может подтвердить определения минералогии и помочь в интерпретации происхождения детритовых зёрен в осадочных породах и концентрации их в почвенных пробах. Определение минералов и их количества производится с использованием бинокуляра наряду с магнитом, UV флюоресценции, исследованием твёрдости и испытания кислотой. Эти методы дают превосходные результаты в комбинации с рентгеном и/или микрозондовым анализом, позволяющими определить детали внутренних текстур и составы, а также идентифицировать потенциально ценные рудные минералы, комплексы тяжелых металлов. Всё это может использоваться для ускоренной характеристики геологии неизвестных площадей во время поисковых работ. Так, например, эти исследования могли бы быть полезными при определении главных литологических структур (и возможно некоторых подчиненных отложений) в районах водосбора. Если золото или другие рудные минералы присутствуют, то минеральные комплексы могут использоваться для прогноза природы рудной минерализации на очень ранней стадии разведки.


Рентгеновский анализ


Этот анализ является основным методом для диагностики минералов в образцах пород. Обычно он выполняется на порошковых пробах, которые могут быть очень маленькими (менее 1 грамма, если используется методика поверхностного покрытия). Полированные разрезы (или стандартные шлифы, которые не имели скользкого покрытия?) также анализировались успешно. Рентгеновский анализ является самым лучшим полуколичественным методом (точность ±5%) и быстрым и дешёвым при картировании зональности гидротермальных изменений.

Рентгеновский анализ определяет пространство (d-пространство, измеряемое в Ангстремах) между плоскостями решётки в минералах от угла (28), при котором рентгеновские лучи с известной длиной волны диффрагируются минералом (рис.1).



Путём сравнения со стандартными минералами, эти измерения позволяют идентифицировать присутствие минеральных фаз, даже в смесях (рис..2). Предел определения большинства минералов в смеси составляет примерно 1-5%, хотя некоторые минералы образуют лучшие рентгеновские пики, чем другие. Так, например, эпидот образует очень слабые рентгеновские пики, даже если он представлен большими концентрациями, тогда как барит образует очень хорошие следы даже при низких концентрациях.

Некоторые слабо кристаллические минералы (т.н. опал-аллофановая глина) аморфны для рентгеновских лучей, они не образуют хороших пиков XRD. Такие аморфные минералы часто могут предполагаться, если имеется на XRD диаграммах несколько нечётких пиков. Обычно опал диагностируется по широкому «бугру» при 20-25°28.



Рентгеновские анализы особенно полезны для идентификации тонкозернистых фаз, в частности, глин. Это очень важно при исследовании эпитермальных месторождений, где глины часто являются самыми надежными геотермометрами, но они плохо отличаются оптическими методами. Этот анализ также полезен для выделения других важных вторичных минералов, т.н. цеолитов, карбонатов, сульфатов, силикатных минералов, полевых шпатов.

Методы препарирования, используемые для особых проб, зависят от целей. Не глинистые минералы обычно анализируются, как общий анализ порошков. Глины лучше изучать с использованием методики осаждения, которая концентрирует глинистые минералы и усиливает основные пики, хотя они подавляют пики с большими углами, которые важны для диагностики других минералов. В дополнении к стандартным воздушно-сухим анализам, пробы глин обычно испытываются после обработки этилен гликолем (рис..3), который расширяет межплоскостные пространства решётки любой разбухающей глины, которая присутствует в образце (т.н. смектит).



Размер расширения связан с долей разбухающей глины в смеси и, таким образом, доля смектита в смешанослойных иллит-смектитовой и хлорит-смектитовой глинах может быть легко определена до 10%. Пробы могут также исследоваться после обработки нагреванием, поскольку различные минералы разрушаются под действием разных температур (рис..4). Это особенно полезно при определении кандитовых глин, поскольку каолинит разрушается ниже 550°С, тогда как диккит сохраняет свою структуру при более высоких температурах.



Рентгеновское излучение с разной длиной волны, используемое при диагностике минералов, обычно определяется природой стандарта, который используется в рентгеновском источнике. Медь является почти официальным стандартом при минералогических исследованиях. Однако имеются примеры, когда предпочитается использование другого стандарта в источнике, как, например, кобальт. Он используются при анализе проб с высокими концентрациями железа, поскольку «железные шляпы» могут не давать удовлетворительные результаты с медным стандартом. Важно знать какие использовались рентгеновские трубки, поскольку все расположения характеристических пиков 28 для каждого минерала бывают смещены!


PIMA анализ


Подобно рентгеновскому анализу PIMA (портативный инфракрасный минералогический анализатор) используется для определения минералогии образцов пород. Он требует относительно маленьких проб, но они должны быть сухими. Этот метод получил развитие только в последе время. В нём применяется поглощение коротко волнового инфракрасного излучения различными молекулярными связями, особенно связями ОН и СО3. Это быстрый относительно дешёвый метод для определения минералов гидротермально-измененных пород, особенно глин и карбонатов. Следовательно, он очень полезен для диагностики листовых силикатов (филлитов), аргиллитов и глин, интенсивных аргиилитовых изменений.

Однако важно знать пределы применимости этого метода. Во-первых, безводные минералы не будут диагностироваться, если они не увлажняются до гидратного состояния. Сюда входят кварц, полевые шпаты, пироксены, гранаты, ангидрит, барит, флюорит, магнетит, все сульфиды и металлы. Некоторые исследователи полагают, что этим методом трудно определять цеолиты. Но в тоже время иллит, смектит и хлорит могут идентифицироваться в пробах, не обязательно в виде отдельных фаз (которые могут свидетельствовать о наложении), или в смешано-слойных соединениях. Следовательно, предполагается, что это метод является полезным при определении минералов в полевых условиях, но он может требовать рентгеновских и/или петрографических исследований для подтверждения некоторых минералов и текстурных соотношений.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.