Cодовые озера - природная модель древней биосферы континента (11828-1)

Посмотреть архив целиком

Cодовые озера - природная модель древней биосферы континента.

Г.А. Заварзин, Т.Н. Жилина

Введение

Нет оснований сомневаться в том, что именно прокариотное сообщество в течение первых двух миллиардов лет существования биосферы так изменило условия на Земле, что смогли появиться иные, чем прокариоты, формы жизни. Но до сих пор неясно, пришла ли жизнь из океана на сушу или, наоборот, с суши в океан?

Традиционное представление о морском происхождении биоты подтверждают строматолиты, образованные древними цианобактериальными сообществами [Крылов И.Н., Заварзин Г.А., 1983; Сергеев В.Н., Нолл Э.Х., Заварзин Г.А.,1996]. В настоящее время их современных аналогов можно встретить в морских лагунах с высокой соленостью или в горячих источниках. Однако эти свидетельства отчасти связаны с условиями захоронения в прибрежной зоне, где осадки быстро накапливаются. На поверхности континентов, в отличие от областей седиментации, выветривание уничтожает подобные остатки. Лишь одиночные находки цианобактерий в районах древнего карста в Аризоне с возрастом в 2 млрд лет говорят об их присутствии на континентах. Тем не менее неясно, пришли ли цианобактериальные сообщества, оставившие мощные слои строматолитов в прибрежных областях, из океана на сушу или - наоборот? Какие условия могли быть на континентах в далеком прошлом?

Часть 1

В природе жизнедеятельность микроорганизмов - самых древних обитателей Земли - непосредственно связана с первичными геосферными процессами. Для высших организмов эта связь обычно опосредована через микробное звено. Чтобы понять, как развивалась биосфера, необходимо разобраться в том, как действовало микробное сообщество до появления высших организмов и даже эвкариот-протист.

Биосферные процессы проще всего представить через цикл углерода, в котором можно выделить циклы органического (Cорг) и неорганического углерода, сопрягающий их цикл углекислоты и ее растворимых форм. Считается, что источником углекислоты в поверхностных слоях Земли служит дегазация (сегодня ее связывают с подводным вулканизмом срединно-океанических хребтов) и регазация, происходящая в областях субдукции за счет переработки осадочных пород. Цикл углекислоты тесно связан с гидрологическими процессами. Предполагается, что ювенильная CO2 сначала поступает в океан, частично уходит из него в атмосферу, вымывается из нее дождями и попадает либо снова на поверхность моря, либо на континенты, откуда снова возвращается в океан с речным стоком. Обогащенная углекислотой дождевая вода способствует химическому выветриванию пород, которое непосредственно зависит от количества осадков и температуры. Сильнее всего оно проявляется во влажном гумидном климате, где формируются мощные коры выветривания.

Для эволюции поверхностной оболочки Земли очень важно взаимодействие углекислоты с изверженными горными породами. При этом силикаты разлагаются с выносом из них щелочных (Nа) и щелочноземельных (Сa) металлов. В первом случае в воды поступает NаНСО3, во втором - Сa(HCO3)2. В обоих случаях остаточным продуктом служат глинистые алюмосиликаты, которые останавливают дальнейшее разложение, если глины не выносятся с твердым стоком.

В геологическом масштабе времени углекислотное выщелачивание считается определяющим для стока углекислоты из атмосферы. В обратимой реакции [Са(НСО3)2 = СаСО3 + СО2 + Н2О] половина углекислоты возвращается в цикл, а другая выводится из него, образуя карбонаты (Скарб). В результате выветривание изверженных пород дает конечные продукты - карбонаты и глины. В течение архея-протерозоя химическое выветривание способствовало образованию мощных карбонатных платформ в зоне контакта континентов и океана как одних из главных осадочных пород. В этом процессе участвовали циано-бактериальные сообщества, сформировавшие толщи строматолитов. В фанерозое их сменили эвкариоты с карбонатным скелетом, образовавшие рифы.

Из реакции карбонат-бикарбонатного равновесия (СО2 + Н2О = НСО3- + Н+ = СО32- + 2Н+) следует, что рН среды зависит от доступного Са2+: пока он не израсходован, избыточная углекислота уходит в карбонаты и рН не повышается. С другой стороны, пока присутствует СаСО3, рН не понижается, поскольку карбонаты растворяются. Состав раствора зависит от соотношения Са и Na в изверженных породах. Особенно усиливается выщелачивание подземными водами мелкораздробленных вулканических продуктов, что нередко сочетается с повышенной температурой в областях рифтогенеза. Вместе с тем в обычных условиях углекислотное выщелачивание - довольно медленный процесс, который ускоряется под воздействием биоты в 10-100 раз.

Таким образом, в нейтральной среде развитие живых организмов связано с присутствием в ней кальция. Следовательно, нейтральные условия определяются в той или иной степени его наличием - его постоянной концентрацией 10 мМ, как в океанской воде. У живых организмов углекислотное равновесие устанавливается с помощью фермента карбоангидразы, который катализирует целый ряд важных процессов - от поступления углекислоты в клетки автотрофных организмов с образованием органического углерода до выброса ее из клеток органотрофных. Специальный случай представляет формирование известкового скелета, в котором карбоангидраза способствует удалению СО2 при образовании СаСО3.

Высокая щелочность приводит к удалению кальция как макрокомпонента. При рН более 9 в осадок уходит большинство металлов. Доминирующими остаются катион натрия и анионы - карбонат/бикарбонат и хлорид ионы, создающие в зависимости от минерализации более или менее мощную буферную систему. Присутствует также и сульфат, концентрация которого варьирует. Отсутствие Ca и Fe в растворе приводит к тому, что фосфат не связывается в нерастворимые минералы и перестает быть лимитирующим соединением. Такие условия возникают в бессточных внутриконтинентальных областях, если количество осадков может обеспечивать выщелачивание, но недостаточно для промывного режима. Образование карбонатов в почвах служит хорошим индикатором семиаридного (полузасушливого) климата, где карбонаты задерживаются в почве, а раствор соды стекает в депрессии, образуя содовые озера. Вместе с бикарбонатами мигрируют и хлориды, которые удаляются из среды только при испарении воды, образуя эвапориты. Содовые озера, приуроченные к поясу семиаридного климата, представляют типичную внутриконтинентальную экосистему.

С.Кемпе и Э.Дегенс (Германия) выдвинули гипотезу первичного "содового океана", рассчитав, что благодаря углекислотному выщелачиванию масса вод могла быть щелочной [Kempe S., Degens E.T.,1985]. Трудно сказать, реально ли это для океана с его тонкой корой и большой массой воды, но что такие условия могли и, скорее всего, преобладали внутри континента, сомневаться трудно.

Отсюда следует, что содовые озера в принципе можно противопоставить морским условиям как внутриконтинентальные места обитания первичной биоты. С одной стороны, при высокой минерализации такие водоемы вряд ли подходили для жизни высших организмов, включая эвкариот. С другой - хорошо известно, что в них необычайно пышно развивается микрофлора. Это свойство поражало всех исследователей, начиная с Б.Л.Исаченко, первого микробиолога, изучавшего содовые озера Кулундинской степи, и кончая современными исследователями африканских озер.

Часть 2

Вместе с тем содовые озера - это лишь маленькие модели, гидрохимически весьма разнообразные. Небольшие размеры озер обусловливают их большую нестабильность в зависимости от колебаний климата. В геологическом масштабе времени - это явно эфемерные образования. Будучи экстремальными местами обитания, они, очевидно, населены своеобразным сообществом алкалофилов, приспособленных к высокощелочной среде с избытком натрия и очень низким содержанием иона водорода.

Действительно, могут ли содовые озера служить моделью жизни на континентах в докембрии, пока отсутствовали эвкариоты? Нельзя ли представить, что прокариотная биосфера вышла не из океана, а с континентов? Не сохранилась ли в современных содовых озерах древняя наземная микрофлора? Каким требованиям должно удовлетворять алкалофильное микробное сообщество таких озер, чтобы рассматривать его как исходное для эволюции наземной биоты [Заварзин Г.А., 1993]?

Во-первых, в содовых озерах должны присутствовать все основные функциональные группы организмов, чтобы замкнуть биогеохимические циклы, т.е. система должна быть автономной. Во-вторых, алкалофильное сообщество должно включать представителей большинства филогенетических ветвей, чтобы не оказаться тупиковой ветвью. В-третьих, сообщество должно быть открытым, т.е. при уменьшении экстремальных факторов оно должно переходить в "нормальные" наземные сообщества, прежде всего почвы и континентальных вод.

Для обоснования этих положений в качестве природной модели мы выбрали экстремально щелочные с рН 9-10 высокоминерализованные водоемы Восточно-Африканского рифта, прежде всего экваториальное оз.Магади, находящееся в области недавней вулканической деятельности, и низкоминерализованные озера Центральной Азии и Прибайкалья, расположенные в восточносибирских степях вдоль рек Енисея (южнее Кызыла), Селенги, Онона.

Исследовались водоемы, где "трава не растет и скот не пьет". В таких водоемах эвкариоты практически отсутствуют, а вместе с ними выпадает и пастбищная трофическая цепь в сообществе. Химический состав и минерализация озер, расположенных в Центральной Азии и Прибайкалье, очень пестрые, что часто обусловлено подстилающими их породами. Поэтому такие озера оказались удобным полигоном для изучения видового разнообразия алкалофильных и галоалкалофильных бактерий при рН 8.5-10 и солености 2-20%. Каждое такое озеро фактически может рассматриваться как природная накопительная культура для развития соответствующего микробного сообщества алкалофилов.


Случайные файлы

Файл
55278.rtf
131664.rtf
9575-1.rtf
160032.rtf
129013.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.