Геоэкологический фактор безопасности жилища (6113-1)

Посмотреть архив целиком

Геоэкологический фактор безопасности жилища

Гликман А.Г.

НТФ "ГЕОФИЗПРОГНОЗ"

Мой дом - моя крепость. Но иногда эта крепость и без участия неприятеля, сама по себе, вдруг внезапно разрушается. А иногда таит в себе невидимого врага, сокрушающего жителей и именуемого экологически опасной зоной. Почему так происходит?

Долгое время это было загадкой. Не обошлось и без мистики. Замечено, что встречаются иногда в деревнях дома, где люди жить не могут. Болеют, умирают. Когда это становится очевидным, дома бросают, и они после этого довольно быстро разваливаются и проваливаются в землю. Вот это быстрое разрушение и уход под землю и приводит к мысли о том, что здесь не все ладно, и что не обходится без нечистой силы.

Увязать эти два фактора - пониженную несущую способность грунта и выход из него газообразных субстанций, оказывающих вредное воздействие на здоровье человека – удалось в результате выявления ряда свойств зон тектонических нарушений, и стало это возможным в результате применения метода спектрально-сейсморазведочного профилирования (ССП).

На ССП-разрезах зоны тектонических нарушений проявляются специфическими очертаниями - воронкообразными (V-образными) объектами либо одной образующей V-образного объекта. (Такой объект, полученный при исследовании дома N 11 по Шпалерной улице (СПб)1 приведен на рис.1).



Рис. 1

Зоны тектонических нарушений разбросаны на Земле хаотично, и вероятность попасть в них достаточно велика. И именно своеобразием свойств горных пород (грунта) в зонах тектонических нарушений определяется влияние этих зон на инженерные сооружения и наше здоровье. В результате многолетних и многократных исследований этих зон, а также сопоставлений различных ситуаций в этих зонах, выяснились следующие свойства находящихся там горных пород:

Грунт в зонах тектонических нарушений ведет себя наподобие зыбучих песков. Этому способствуют, с одной стороны, пониженная несущая способность грунта в этих зонах, а с другой, наличие там существенной (амплитудой до 10 см) пульсации, которая была обнаружена сравнительно недавно учеными УрАН. В результате суммарного воздействия этих двух факторов происходит одновременное разрушение и засасывание сооружений в землю. Только зыбучие пески затягивают жертву за считанные минуты, а те зоны, которые можно выявлять с помощью метода ССП - за более длительный срок – месяцы и годы - но столь же неумолимо.

Горные породы (грунт) в зоне тектонического нарушения находятся в столь разрушенном состоянии, что их даже не удается извлечь при разведочном бурении. Высокая нарушенность пород в зонах тектонических нарушений прослеживается от кристаллического фундамента (граниты, гнейсы и т.п.) на всю мощность осадочного чехла, не достигая, однако дневной поверхности примерно 20-50 м.

Нарушенный трещиноватостью породный столб над тектоническим нарушением обладает повышенной проницаемостью. Это и хорошо и плохо. Хорошо - потому что пробурив в этом месте скважину, мы можем добывать воду. Иначе говоря, будет реализована артезианская скважина. Плохо же - потому что одновременно с водой в этих зонах выходят глубинные газы - радон, торон, СО, метан, пары тяжелых металлов, и это приводит к формированию геопатогенных зон2. Кроме того, если в зоне тектонического нарушения окажется выгребная яма, помойка, либо какое бы то ни было хранилище вредных веществ, то их жидкие фракции проникнут сверху вниз, вглубь, вплоть до кристаллических пород, и вдоль тектонических нарушений будут распространяться как угодно далеко, в соответствии с местонахождением и конфигурацией нарушений. Естественно, что это вызовет заражение воды, которую мы могли бы извлекать артезианской скважиной.

Тектонические нарушения можно уподобить сосудам человеческого организма. Они разветвлены, переходят одно в другое, могут быть как крупными, так и мелкими. Кроме того, тектонические нарушения в различных геологических условиях характеризуются определенной спецификой. Так, в условиях залегания карбонатных пород (известняков), тектонические нарушения контролируют карсты, и теперь, с появлением метода ССП, этот бич строителей может своевременно выявляться и оконтуриваться. В условиях Санкт-Петербурга, Северо-Запада европейской части России и в ряде других мест тектонические нарушения контролируют плывуны.

Плывун - это геологический объект, содержащий под высоким давлением водонасыщенную мелкодисперсную субстанцию типа мельчайшего песка. Давление внутри плывуна достигает таких величин, что буровой инструмент, попавший в него, может быть выброшен с большой силой. В Санкт-Петербурге, прослеживая тектоническое нарушение, мы почти наверняка прослеживаем и плывун.

Здесь хотелось бы обратить внимание на взаимодействие грунтов в зонах тектонических нарушений с инженерными сооружениями. То есть не только зоны тектонических нарушений воздействуют на инженерные сооружения, но и наоборот, наличие домов также изменяет свойства грунта. Дело в том, что породный столб, расположенный над тектоническим нарушением, находится в нарушенном состоянии не на всю свою высоту. Приповерхностные (метров до 30-50) породы перед началом строительства могут быть такими же прочными, как и соседствующие с ними (такого же, естественно, состава) породы, не находящиеся в зонах тектонических нарушений. Объясняется это тем, что разрушение пород в зонах тектонических нарушений происходит под раздавливающем воздействием со стороны вышележащих пород. Для того чтобы приповерхностные породы начали разрушаться и проседать, на них должно быть оказано какое-то дополнительное воздействие. Как только начинаются строительные работы, такое воздействие на грунт оказывается как со стороны строительной техники, так, затем, и со стороны построенного сооружения. Возникшая дополнительная нагрузка приводит к тому, что зона нарушенности пород поднимается снизу вверх. Со временем, когда она достигнет поверхности, окажется что сооружение стоит на грунте, потерявшем свою изначальную несущую способность. Естественно, что вместе с движением к поверхности зоны трещиноватости пород, поднимается и верхняя граница плывунов.

Известно много случаев, когда при исследовании причин внезапного разрушения дома оказывалось, что грунт имеет несущую способность, существенно меньшую, чем было определено при инженерно-геологических изысканиях, а также содержит плывун, которого при строительстве точно не было. А поскольку физика этого явления была неизвестной, то возникли представления о том, что снижение несущей способности грунта произошло в результате так называемого "выноса" грунта или, по научному, суффозии. На самом же деле, как оказалось, уменьшение несущей способности грунта происходит в результате выхода на поверхность трещиноватого состояния пород в зоне тектонического нарушения. А если там есть еще и плывун, то дальнейшее уменьшение несущей способности грунта происходит за счет того, что в результате каких-то действий этот плывун оказался разгерметизированным. То есть, за счет изменения гидрогеологических условий.

О том, как наличие плывуна влияет на состояние дома, нами прослежено многократно и опубликовано как на страницах журналов "Жизнь и безопасность", так и в интернете, на нашем сайте http://www.newgeophys.spb.ru/. Однако природа многообразна, и каждое исследование дает новую пищу для размышлений и представляет большой научный интерес.

К сожалению, только научный, так как инстанции, в компетенцию которых входит безопасность жителей города, этим не интересуются.

Вот уже полтора года мы наблюдаем, как развиваются события вокруг дома N 8, корпус 2, по Двинской улице. Анализ причин разрушения соседствующего с ним корпуса 3 дома N 8, которое произошло 3-го июня 2002 года, и исследование территории, прилегающей к этому дому, показали, что 2-й корпус неизбежно должен повторить судьбу 3-го.

На рис.2 показана эта территория.



Рис. 2

Оба дома совершенно одинаковы и состоят из четырех секций. Южная секция 3-го корпуса стояла на плывуне, и когда этот плывун, волею случайных обстоятельств, оказался выпущенным, то несущая способность грунта под этой частью дома уменьшилась до нуля, то есть южная часть дома потеряла опору. Эта секция держалась только за счет того, что она была прикреплена к третьей секции. Однако крепление это не настолько надежно, чтобы долго удерживать целую секцию. И когда связи порвались, четвертая (южная) секция 3-го корпуса оторвалась, отвалилась и рухнула.

Как выяснилось в результате исследований с помощью метода ССП, этот плывун идет от южной части дома 8 корп.3 к южной части дома 8 корп.2. И выйдя из-под корпуса 3, он неизбежно потерял герметичность по всей своей длине, а стало быть, выйдет и из-под корпуса 2. То есть точно так же, как и в 3-м корпусе, под южной частью корпуса 2 должна уменьшиться несущая способность грунта, и здесь тоже должна отвалиться и рухнуть южная секция дома.

С тех пор мы собираем признаки соответствия сделанного прогноза. В течение всех полутора лет раскрываются трещины в стенах между четвертой и третьей секциями дома. Причем раскрыв трещин в верхней части здания существенно больше, чем внизу, что свидетельствует о том, что отрыв идет с поворотом, то есть, в точности так же, как это было и с корпусом 3. Зимой (в феврале) 2003 года был период, когда отрыв южной секции активизировался, и это проявлялось как бы микроземлетрясениями, которые ощущали в течение нескольких дней жители этой самой, южной секции.


Случайные файлы

Файл
11377-1.rtf
148368.rtf
57750.rtf
11042-1.rtf
71549-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.