Пирокластические отложения андезитовых вулканов и диагностика их генетических типов (77068-1)

Посмотреть архив целиком

Пирокластические отложения андезитовых вулканов и диагностика их генетических типов

Показаны современное состояние и актуальность изучения пирокластических отложений андезитовых вулканов; характерные особенности и критерии диагностики каждого из генетических типов отложений.

Введение

Извержения вулканов - внешнее проявление глубинных планетарных процессов Земли. Разнообразие природных обстановок (эндогенных и экзогенных условий), в которых существуют вулканы, обусловливает многообразие типов их извержений.

Наиболее распространенным типом вулканической активности является эксплозивная деятельность вулканов, в результате которой на поверхность земли поступает пирокластический материал. Доля пирокластических продуктов при извержениях вулканов различна. Например, при извержениях гавайского типа она мала, при плинианских - преобладает, а порой является единственным продуктом извержения. Структурно-текстурные особенности пирокластических отложений определяются свойствами исходной магмы, ее газонасыщенностью, вязкостью и т.д., а также динамикой эксплозивной активности вулкана.

Наиболее опасными являются извержения вулканов, поставляющие на поверхность земли пирокластические продукты риолитового, дацитового и андезитового составов, в связи с внезапностью и катастрофическими масштабами таких извержений. Всем известны последствия извержений вулканов Мон-Пеле на о-ве Мартиника (1902 г.), Безымянный на Камчатке (1956 г.), Сент-Хеленс в США (1980 г.), Унзен в Японии (1991 г.) и т.д.

В целом, в настоящее время пирокластические образования среднего - кислого составов разделяются на следующие генетические типы: отложения 1 - тефры или пирокластики, выпавшей из эруптивных облаков (pyroclastic fall), 2 - пирокластических потоков (pyroclastic flows), 3 - пирокластических волн (pyroclastic surges), 4 - пепловых облаков пирокластических потоков (ash cloud of pyroclastic flows) или коигнимбритовых облаков (co-ignimbrite plumes).

Генетические типы пирокластических отложений



Рис. 1

Отложения тефры (pyroclastic fall) представляют собой образования, формирование которых происходит под действием гравитации из нижних частей поднимающейся над кратером вулкана вертикальной эруптивной колонны и из пепловой тучи, трансформированной из этой колонны (рис.1) [12]. Термин "тефра", в понимании С.Тораринсона, который предложил это название для обозначения всех обломочных образований, имеющих признаки воздушной транспортировки из кратера [37], в мировой практике сейчас употребляется достаточно редко, так как с увеличением степени детальности исследования пирокластики, стало ясно, что этот термин объединяет спектр отложений разного генезиса. В нашей стране термин "тефра" остался для обозначения определенных образований (см. определение), которые за рубежом называют сегодня "pyroclastic fall" [32].

По размерам частиц отложения тефры подразделяются на бомбы (глыбы), лапилли и вулканический пепел.

Образование отложений тефры, в общих чертах, состоит в следующем. В результате эксплозий над кратером вулкана формируется эруптивная колонна, которая в верхней своей части превращается в эруптивную тучу. Высота, диаметр эруптивной колонны зависят от первоначального импульса движения; от состава поступающего вещества, его расхода, т.е. связаны с эндогенными процессами. Распространение эруптивной тучи целиком подвластно атмосфере (ее стратификации, влажности; направлению и силе ветра и т.д.), т.е. зависит от экзогенных факторов.

Вблизи вулкана выпадают грубые обломки, на далеких от него расстояниях (до сотен и тысяч километров) отложения постепенно становятся тонкозернистыми. По мере удаления от вулкана кроме гранулометрического, изменяется также минеральный состав пеплов, что объясняется эоловой гравитационной дифференциацией материала.

При сильных извержениях вулканов, особенно андезито-дацитовых, на расстоянии в сотни и тысячи километров от вулкана происходит отложение больших по мощности слоев пеплов. Впоследствии эти пеплы становятся маркирующими горизонтами, служащими стратиграфическими реперами при изучении осадочных толщ, так как их образование на всей площади происходит почти одновременно и в короткие сроки (от часов до нескольких месяцев). С помощью тефрохронологии, например, восстановлена история развития примерно 10 вулканов Камчатки [5-8 и др.].

Наиболее тонкие (размером в десятки микрон и менее) фракции пеплов при сильных плинианских извержениях вулканов достигают верхних слоев атмосферы и переносятся в стратосфере на большие расстояния [21]. Например, считается, что пепел вулкана Кракатау извержения 1883 г. три раза обогнул Землю, прежде чем выпал на поверхность земли. Атмосферные явления, вызванные извержением вулкана Кракатау, сохранялись в течение более пяти лет, вулкана Агунг - три года [21]. Тонкие пеплы обладают высокой адсорбционной способностью [2,3,9,17], и в стратосферу попадают уже, по сути, аэрозоли - твердые частицы с адсорбированными ионами газов и паров воды в воздушной среде. Вынос большого количества тонких пеплов в стратосферу уменьшает солнечную радиацию, и в прошлом, по мнению некоторых исследователей, стал причиной похолоданий климата и оледенений Земли [2,9,22,28 и др.]. По данным изучения вулканических аэрозолей (например, извержения вулкана Эль-Чичон [31]) был сделан прогноз развития "ядерной зимы" на Земле, так как пылевой аэрозоль, возникающий при ядерных взрывах, сходен с аэрозолями вулканов [2,9].

По дальности распространения от центра извержения и высоте выбросов пеплов, даются оценки силы и энергии эксплозивного извержения [17]. Выяснено, что вещественный состав отложений тефры обусловливает приуроченность их определенным энергетическим классам эксплозивных извержений вулканов. Например, эксплозивные извержения, дающие пеплы базальтового состава, не отмечены выше 12-го энергетического класса, андезитового состава - встречены в пределах 3-го - 14-го классов, дацитового - в пределах 5-го - 16-го классов. Глобальный разнос пеплов, попадающих в слои тропопаузы, отмечен от 11,5 и выше энергетического класса [17].



Рис. 2

Для обозначения всех видов потоков, сложенных раскаленными обломками, С.Арамаки предложил общее название - пирокластические потоки [1].

Пирокластические потоки представляют собой смесь разноразмерного пирокластического материала и газа, имеющую в основном ламинарное течение; причем количество обломков в смеси значительно превышает газовую составляющую (см. рис.1) [4,32,35].

Главными механизмами образования пирокластических потоков считаются: а) коллапс эруптивной колонны; б) коллапс экструзивного купола или фронта лавового потока на его склоне [27, 40, 41 и др.].

В первом случае образование потоков происходит в результате обрушения части вертикальной колонны, в которой скорость подъема и несущая способность газопепловой струи достигают минимума (рис.2а) [25,27,36]. Такой механизм образования потоков называется "суфриерским" [21], по вулкану Суфриер, где он четко проявляется. Дальность распространения потоков, в основном, определяется количеством движения и гравитацией, но велика роль в этом также газонасыщенности и автоэксплозивности материала [24].

Второй тип механизма образования потоков получил название "тип мерапи", по вулкану Мерапи, о.Ява [21] (рис.2б). По мере роста экструзивного купола вулкана его отдельные секторы постепенно становятся неустойчивыми и обрушиваются, в результате чего по склону вулкана скатываются пирокластические массы, похожие на лавины. Такие же лавины формируются в результате обрушения крутых фронтальных частей лавовых потоков на куполе вулкана.



Рис. 3

Пирокластические потоки распространяются с высокой скоростью - до 200 м/сек [21,27], двигаясь в первой части своего пути по желобам и каньонам (рис.3). Их высокая мобильность объясняется выделением растворенного газа при разрушении ювенильных стекловатых частиц и литоидных обломков (явлением автоэксплозивности); нагреванием и расширением воздуха, захваченного фронтом и боковыми частями потока [24,26,30,34,38,39]. Кроме этого, при формировании эруптивной колонны происходит засасывание в нее воздуха, который затем способствует мобильности пирокластических потоков, образующихся при коллапсе колонны [23]. Пирокластические потоки могут преодолевать высокие препятствия, что связано, по мнению Т.Миллера и Р.Смита [29], не с расширением газов, а с количеством движения.

Для пирокластических потоков характерно хаотическое распределение разноразмерных обломков в заполнителе. Часто в разрезах отложений потоков наблюдается также концентрация обломков полосами в средних или верхних их частях, связанная с локальными ускорениями перемещения материала потоков.

Обломки в потоках представлены полуокатанным ювенильным пемзовидным материалом, а также и резургентным, состав которого многообразен: магматические "корки" с границ очага, породы выводного канала вулкана, обломки с подошвы и боковых частей долины, по которой следует поток и т.д. [27]. "Резургентными" считают также породы растущего экструзивного купола, подвергшиеся постмагматическому преобразованию в периоды межкульминационных фаз развития купола и обрушившиеся во время извержения вулкана. Материал заполнителя пирокластических потоков при движении по склону вулкана хорошо перемешивается, и его состав отражает средний состав продуктов конкретного извержения вулкана [10,12].


Случайные файлы

Файл
136397.rtf
178171.rtf
113859.rtf
69064.rtf
95998.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.