Вулканизм и его роль в эволюции нашей планеты (76727-1)

Посмотреть архив целиком

Вулканизм и его роль в эволюции нашей планеты

Т.И. Фролова. Московский государственный университет им. М.В. Ломоносова

Самые ранние процессы вулканизма синхронны со временем становления Земли как планеты. По всей вероятности, уже на стадии аккреции (концентрации планетного вещества за счет газово-пылевых туманностей и соударения твердых космических обломков - планетозималей) происходил ее разогрев. Выделение энергии за счет аккреции и гравитационного сжатия оказалось достаточным для ее начального, частичного или полного плавления, с последующей дифференциацией Земли на оболочки. Несколько позднее к этим источникам разогрева присоединилось выделение тепла радиоактивными элементами. Концентрация железокаменной массы Земли, как и на других планетах Солнечной системы, сопровождалась обособлением газовой, преимущественно водородной оболочки, которую она в дальнейшем потеряла в период максимальной активности Солнца, в отличие от крупных, удаленных от Солнца планет группы Юпитера. Об этом говорит обеднение современной земной атмосферы редкими инертными газами - неоном и ксеноном по сравнению с космическим веществом.

Согласно представлениям А.А. Маракушева [3], дифференциация железокаменной массы Земли, близкой по составу метеоритам - хондритам и полностью расплавленной под большим давлением водородной газовой оболочки, привела к высокой концентрации существенно водородных флюидов (летучих компонентов в надкритическом состоянии) в начавшем обособляться металлическом (железо-никелевом) ядре. Таким образом, Земля приобрела большой флюидный запас в своих недрах, определивший ее последующую, уникальную по своей длительности, по сравнению с другими планетами, эндогенную активность. По мере консолидации Земли в направлении от ее внешних оболочек к центру возрастало внутреннее флюидное давление и наступала периодическая дегазация, сопровождаемая образованием магматических расплавов, поступающих на поверхность при растрескивании застывшей земной коры. Таким образом, самый ранний вулканизм, который характеризовался взрывным, высокоэксплозивным характером, был связан с началом остывания Земли и сопровождался образованием атмосферы. Согласно другим представлениям, первичная атмосфера, образовавшаяся на стадии аккреции, в дальнейшем сохранилась, постепенно эволюционируя в своем составе. Так или иначе, примерно 3,8 - 3,9 млрд. лет назад, когда температура на поверхности Земли и в прилегающих частях атмосферы опустилась ниже точки кипения воды, образовалась гидросфера. Наличие атмосферы и гидросферы сделало возможным в дальнейшем развитие жизни на Земле. Сначала атмосфера была бедна кислородом, пока не появились продуцирующие ее простейшие формы жизни, что произошло около 3 млрд. лет назад (рис. 2).



Рис. 2. Главнейшие события в истории Земли.

О составе самых ранних вулканических пород Земли, в настоящее время полностью переработанных последующими процессами, можно судить при сравнении ее с другими планетами земной группы, в частности с относительно хорошо изученным нашим спутником - Луной. Луна - планета более примитивного развития, рано израсходовавшая свой флюидный запас и потерявшая вследствие этого эндогенную активность. В настоящее время это "мертвая" планета. Отсутствие в ней металлического ядра говорит о рано прекратившихся процессах ее дифференциации на оболочки, а пренебрежимо слабое магнитное поле - о полном застывании ее недр. В то же время о наличии флюидов на ранних этапах развития Луны свидетельствуют пузырьки газа в лунных вулканических породах, которые состоят в основном из водорода, что говорит об их высокой восстановленности.

Наиболее древние, известные в настоящее время породы Луны, развитые на поверхности лунной коры на так называемых лунных материках, имеют возраст 4,4 - 4,6 млрд. лет, что близко к предполагаемому возрасту образования Земли. Они представляют собою кристаллизовавшиеся на малых глубинах или на поверхности богатые высококальциевым полевым шпатом - анортитом - светлоцветные основные породы, которые принято называть анортозитами. Породы лунных материков подвергались интенсивной метеоритной бомбардировке с образованием обломков, частично переплавленных и смешанных с метеоритным веществом. В результате образовались многочисленные ударные кратеры, сосуществующие с кратерами вулканического происхождения. Предполагается, что нижние части лунной коры сложены породами более основного, низкокремнеземистого состава, близкими к каменным метеоритам, а непосредственно подстилают анортозиты и анортитовые габбро (эвкриты). На Земле ассоциация анортозитов и эвкритов известна в так называемых расслоенных интрузивах основного состава и является результатом дифференциации базальтовой магмы. Поскольку физико-химические законы, определяющие дифференциацию, одинаковы во всей Вселенной, логично предположить, что и на Луне древнейшая кора лунных метеоритов образовалась в результате раннего плавления и последующей дифференциации магматического расплава, слагавшего верхнюю оболочку Луны в виде так называемого "лунного океана магмы". Отличия в процессах дифференциации лунных магм от земных заключаются в том, что на Луне она чрезвычайно редко доходит до образования высококремнеземистых кислых пород.

Позднее на Луне образовались крупные депрессии, названные лунными морями, выполненные более молодыми (3,2 - 4 млрд. лет) базальтами. По составу эти базальты в целом близки к базальтам Земли. Они отличаются низким содержанием щелочей, особенно натрия, и отсутствием оксидов же леза и минералов, содержащих гидроксильную группу ОН, что подтверждает потерю расплавом летучих компонентов и восстановительную обстановку вулканизма. Бесполевошпатовые породы, известные на Луне, - пироксениты и дуниты, вероятно, слагают лунную мантию, являясь либо остатком от выплавления базальтовых пород (так называемым реститом), или же их тяжелым дифференциатом (кумулатом). Ранняя кора Марса и Меркурия аналогична кратерированной коре лунных материков. На Марсе, кроме того, широко развит более поздний базальтовый вулканизм. Базальтовая кора есть и на Венере, однако данные по этой планете пока очень ограниченны.

Привлечение данных сравнительной планетологии позволяет утверждать, что формирование ранней коры планет земной группы происходило в результате кристаллизации магматических расплавов, претерпевших большую или меньшую дифференциацию. Растрескивание этой застывшей протокоры с образованием депрессий сопровождалось позднее базальтовым вулканизмом.

В отличие от других планет, на Земле не сохранилось самой ранней коры. Более или менее достоверно историю вулканизма Земли можно проследить лишь с раннего архея. Самые древние из известных возрастных датировок принадлежат архейским гнейсам (3,8 - 4 млрд. лет) и зернам минерала циркона (4,2 - 4,3 млрд. лет) в метаморфизованных кварцитах. Эти датировки на 0,5 млрд. лет моложе, чем образование Земли. Можно предположить, что все это время Земля развивалась аналогично другим планетам земной группы. Примерно с 4 млрд. лет на Земле формировалась континентальная протокора, состоящая из гнейсов, преимущественно магматического происхождения, отличающихся от гранитов меньшими содержаниями кремнезема и калия и получивших название "серых гнейсов" или ассоциации ТТГ, по названию трех главных магматических пород, соответствующих составу этих гнейсов: тоналитов, трондьемитов и гранодиоритов, подвергнутых впоследствии интенсивному метаморфизму. Однако "серые гнейсы" вряд ли представляли первичную кору Земли. Неизвестно также, насколько широко они были распространены. В отличие от значительно менее кремнеземистых пород лунных материков (анортозитов), такие большие объемы кислых пород не могут получиться при дифференциации базальтов. Образование "серых гнейсов" магматического происхождения теоретически возможно лишь при переплавлении пород базальтового или коматит-базальтового состава, вследствие своей тяжести опустившихся на глубокие уровни планеты. Таким образом, мы приходим к выводу о базальтовом составе коры, более ранней, чем известная нам "серогнейсовая". Наличие ранней базальтовой коры подтверждается находками в архейских "серых" гнейсах более древних метаморфизованных блоков основного состава [1]. Неизвестно, претерпела ли родоначальная магма базальтов, слагавших раннюю кору Земли, дифференциацию с образованием анортозитов, подобных лунным, хотя теоретически это вполне возможно. Интенсивная многостадийная дифференциация планетного вещества, которая привела к образованию кислых гранитоидных пород, стала возможной благодаря водному режиму, установившемуся на Земле в связи с большим флюидным запасом в ее недрах. Вода способствует дифференциации и очень важна для образования кислых пород.

Таким образом, в течение самого раннего (катархейского) и архейского времени, преимущественно в результате процессов магматизма, к которым после образования гидросферы присоединилось осадконакопление, сформировалась земная кора. Она начала интенсивно перерабатываться продуктами активной дегазации ранней Земли с привносом кремнезема и щелочей. Дегазация была обусловлена формированием твердого внутреннего ядра Земли. Она вызывала процессы метаморфизма вплоть до плавления с общим покислением состава коры. Итак, уже в архее Земля имела все присущие ей твердые оболочки - кору, мантию и ядро.

Нарастающие различия в степени проницаемости коры и верхней мантии, которые были обусловлены различиями в их тепловом и геодинамическом режиме, привели к неоднородности состава коры и к формированию разных ее типов. В областях сжатия, где была затруднена дегазация и подъем на поверхность возникающих расплавов, последние испытывали интенсивную дифференциацию, а ранее образовавшиеся основные вулканические породы, уплотняясь, опускались на глубину и переплавлялись. Формировалась протоконтинентальная двухслойная кора, имевшая контрастный состав: верхняя ее часть была сложена преимущественно кислыми вулканическими и интрузивными породами, переработанными метаморфическими процессами в гнейсы и гранулиты, нижняя - породами основного состава, базальтами, коматитами и габброидами. Такая кора была свойственна протоконтинентам. В областях растяжения формировалась протоокеаническая кора, имевшая преимущественно базальтовый состав. По расколам в протоконтинентальной коре и в зонах ее сочленения с протоокеанической образовывались первые подвижные пояса Земли (протогеосинклинали), отличавшиеся повышенной эндогенной активностью. Уже тогда они имели сложное строение и состояли из менее мобильных приподнятых зон, претерпевших интенсивный высокотемпературный метаморфизм, и зон интенсивного растяжения и прогибания. Последние получили название зеленокаменных поясов, так как слагающие их породы приобретали зеленый цвет в результате процессов низкотемпературного метаморфизма. Обстановка растяжения ранних этапов формирования подвижных поясов сменялась по мере эволюции обстановкой преобладающего сжатия, что приводило к появлению кислых пород и первых пород известково-щелочных серий с андезитами (см. рис. 1). Подвижные пояса, закончившие свое развитие, причленялись к областям развития континентальной коры и увеличивали ее площадь. По современным представлениям, от 60 до 85% современной континентальной коры было сформировано в архее, и мощность ее была близка к современной, то есть составляла около 35 - 40 км.


Случайные файлы

Файл
118666.rtf
72945-1.rtf
182030.rtf
123832.rtf
159209.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.