Прикладные схемы определения метрологических характеристик ядерно-геофизических методов исследования скважин (73153-1)

Посмотреть архив целиком

Прикладные схемы определения метрологических характеристик ядерно-геофизических методов исследования скважин.

Красноперов Владимир Анатольевич, доктор геол.-мин. наук, профессор, академик РАЕН, Кульдеев Ержан Итеменович, инженер, Университет Сулеймана Демиреля, г. Алматы, Казахстан

С позиций метрологии опробование - процесс получения информации о составе и свойствах вещества, управляемый вероятностными и систематическими законами. Каждый метод опробования реализуется в два этапа: на первом создают благоприятные условия измерений, по возможности исключают источники снижения качества; на втором - проводят окончательное измерение, т.е. устанавливают числовую характеристику аналитического свойства. Из отмеченных обстоятельств вытекают важные следствия:

а) количественный анализ - процесс измерительный;

б) для него характерны своеобразные и сложные способы устранения факторов, снижающих достоверность результатов;

в) при измерениях в естественном залегании (in situ) и неразрушающих испытаниях образцов процесс измерений дополнительно осложняется тем, что среда (образец) не может быть подвергнута дополнительной обработке с целью уменьшения влияния неоднородности состава;

г) в различных методах опробования содержания в пробах малых объемов по "аналогии" распространяются на большие объемы, не всегда достаточно обоснованно;

д) при использовании физических методов важной особенностью

процесса анализа является необходимость градуировки: установления зависимости между содержанием элемента и числовой характеристикой аналитического свойства, что служит специфическим источником погрешностей.

Все отмеченное делает правомерным метрологический подход к проблеме с определением таких характеристик, как избирательность, чувствительность, пределы обнаружения и определения, сходимость и воспроизводимость, представительность, правильность и точность [3,6,7,14,15,32,33].

Понятие избирательности (однозначности, специфичности) характеризует способность метода - выделить измеряемое аналитическое свойство элемента на фоне аналогичного от мешающих элементов. В ЯГФМ опробования однозначность определяется специфичностью свойств измеряемого параметра (определенного элемента), заложенной в физическом процессе для определения аналитической характеристики, связанной с измеряемым параметром. В общем случае подход заключается в оптимизации различных параметров инструментального метода для снижения влияния помех. Избирательность повышается применением более подходящего источника ядерных излучений, селективного анализатора, эффективного датчика и т.д.

Чувствительность, пределы обнаружения и определения. В ЯГФМ мерой количества определяемого элемента служит величина физического эффекта в показаниях измерительного прибора. Регистрируемый сигнал пропорционален количеству определяемого элемента. Поскольку все измерения выполняются при наличии фона, то мерой количества является разность двух сигналов.

Чувствительность - определяет способность метода измерений обнаружить с заданной надежностью или вероятностью разницу между очень малыми количествами вещества [28,30]. Существует также понятие - "разрешение метода измерений", т.е. способность с заданной надежностью или вероятностью различать близкие значения измеряемой величины в рабочем диапазоне измерений. Эти понятия специальным ГОСТ-ом не предусматриваются [7]. В проекте рекомендаций [34] понятия чувствительности и разрешения метода также отсутствуют. Даются лишь определения чувствительности и порога чувствительности для измерительного прибора. Понятия точности измерений [7] и чувствительности в рабочем диапазоне измерений практически имеют одинаковый смысл. В области малых значений концентраций введены понятия пределов обнаружения и определения [7] ,имеющие тот же смысл, что и порог чувствительности метода [20, 24, 29, 30].

Предел обнаружения характеризует способность метода обнаружить минимальное количество полезной информации (химического элемента) с надежностью, не превышающей заданную. Это практически предел, к которому нужно стремиться при разработке методики измерений. Он зависит лишь от соотношения между полезным эффектом и фоном.

Предел определения характеризует способность метода определить минимальное количество полезной информации (химического элемента) с заданной надежностью и зависит от суммарной погрешности измерений в области малых содержаний:

, (I.I)

где Р - предел определения;

K - коэффициент надежности;

M -величина полезного сигнала на единицу содержания;

s å и s i - погрешности измерений.

Для ЯГФМ наиболее оптимален случай, когда сумма аппаратурных, физических и технических погрешностей близка к статистической ошибке измерения фона и распределение информации при достаточно большом количестве измеряемых актов подчиняется нормальному закону:

. В этом случае предел определения можно оценить как:

(1.2)

где Ja и Jф - интенсивности полезного сигнала на единицу содержания и фона; h =Ja/Jф контрастность; t-время измерения.

Окончательно величина Р оценивается по сходимости результатов ЯГФМ в области забалансовых содержаний (< 0,3 бортового для за балансовых руд) на длину единичной геологической пробы – L (1-2 м) для t =L /V, где V - скорость каротажа.

В радиохимии, активационном анализе используются следующие характеристики: критический уровень сигнала, на котором могут основываться решения; нижний предел детектирования, чувствительность детектирования, минимальная определяемая активность (или масса), предел гарантии чистоты [30]. К этому нужно добавить критерии, в которых предел обнаружения принят эквивалентным фону или превышает фон на заданную величину. В работе [30] проведена оценка различных критериев обнаружения, показано, что полученные значения составляют 1-20 стандартных отклонений фона. В ядерной геофизике порог чувствительности обычно оценивают лишь с учетом статистической ошибки [5, 31]. Поэтому определенный интерес представляет разработка способов оценки порога чувствительности, как предела определения, при конкретном использовании измерений с учетом главных действующих факторов.

В соответствии с [7] качество измерений характеризуется сходимостью и воспроизводимостью.

Сходимость измерений - качество, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях.

Воспроизводимость измерений - качество, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в разное время, в различных местах, различными методами и средствами). Следует отметить, что для рентгеновских и гамма-гамма методов, обладающих малой глубинностью, расхождения при повторных измерениях лучше характеризовать понятием воспроизводимость, т.к. информация поступает с различных частей поверхности скважины (выносной блок датчика описывает различные образующие), что при неравномерном распределении оруденения вносит весьма существенную дополнительную погрешность за счет при родной дисперсии содержаний. В то же время повторение результатов в условиях скважин для методов с большей глубинностью (активационных, нейтронных и гамма-радиационных), характеризуется понятием сходимости, т.к. информация поступает практически равномерно из окружающего объема породы, а глубинность исследований соизмерима с диаметром скважин. Поэтому при выполнении контрольных измерений в скважинах с неравномерным оруднением малоглубинными методами при оценке сходимости необходимо учитывать дисперсию содержаний по данным половин кернов. При этом дополнительным способом контроля служат измерения на специальных эталонах до и после записи диаграммы каротажа.

В опробовании понятие представительность имеет ряд толкований, сводящихся к тому, на какой геологический объем распространяется информация от пробы [33]. Для геофизического опробования существует понятие глубинности метода, за которую принимается толщина насыщенного по мощности слоя исследуемой среда, дающая 90% полезной информации [31].

Понятие глубинности отвечает представительности пробы лишь в первом толковании, когда проба представляет собственную область замера. Для ЯГФМ глубинность изменяется от долей мм до десятков см.

В соответствии с [7] правильность результатов измерений (данных опробования) определяется как качество, отражающее близость к нулю систематических погрешностей в их результатах. Оценка величины систематических расхождений проводится по сопоставлению средних значений подсчетных параметров: содержаний, мощностей и линейных запасов по ЯГФМ и геологическому опробованию. В сопоставлениях не должны участвовать данные геологического опробования, использованные ранее для получения рабочей эталонной зависимости (пересчетного коэффициента) для перевода показаний ЯГФМ в значения определяемого признака.

Оценка правильности результатов наиболее важна для относительных измерений, к которым относятся ЯГФМ. Специфичность оценки правильности результатов при опробовании в естественном залегании, в том числе и ЯГФМ, заключается в отсутствии "абсолютных" эталонов для сравнения. Принято считать, что результаты по пробам большого объема (валовым) обладают большей надежностью, чем результаты оперативных рядовых методик опробования бороздой, затиркой, горстью, с помощью извлечения керна, шлама и т.п. ЯГФМ по объемной представительности (глубинности) принадлежат к группе рядовых, оперативных.

Практика показывает, что на большинстве геологических объектов, разведуемых бурением, исполнители-геофизики имеют возможность сравнивать свои результаты с данными рядового опробования керна, отвечающими определенным инструктивным требованиям к качеству исполнения (весовой выход керна не менее допустимого, обычно 70%; точность химического анализа в соответствии с допусками [18]. Причем рядовое опробование зачастую обладает систематическими расхождениями за счет избирательных потерь материала геологических проб.


Случайные файлы

Файл
160481.rtf
150509.rtf
73151-1.rtf
6583-1.rtf
28069.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.