Животноводство (13100)

Посмотреть архив целиком

1.МЖФ ГЕНПЛАН

Основа-принятая технология. Генплан - графич. изображение показывающее взаимное расположение основных производственных и вспомогательных построек и сооружений, дорог, инж. коммуникаций, зелёных насаждений.

Требования : 1) Участок –горизонтальный; 2) Расстояние от жилой зоны КРС – 200 м, свиноферма – 500, птицефабрики – 1000; 3) с надветренной стороны; 4) резервная площадь.5)Участок возвышенный

Блокировка зданий:

1.Родильное отделение – отдельно от других или отдельный вход;

2.В одном здании может быть:

-профилакторий+молоч.телята+телята до 6 мес+род.

-кормоце+склад

-молочное+коровник

-здание для молодняка+для откорма.

-пункт искуств. осем.+коровник

3.Выгульные площадки-вдоль зданий с подветренной стороны.

Расположение построек и сооружений:

Зональность – 3-6 зон:

1.Производственная,2.Кормовая,3.Навозная,4.Сани-тарно-ветеринарная,5.Административная,6.Зона хоз. построек

Паспорт фермы: объём производства (коров), кол-во скотомест, общая площадь, коэф. застройки (Sобщ/Sзастр), коэф использования участка (Sобщ/Sисп).


2.МЖФ ОПРЕДЕЛЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ КОРНЕРЕЗОК

Q = V*n**z*Кисп*Кпуст

V-объём корнеплодов, срезаемых ножом за 1 оборот.

n-частота вращения, -плотность, z-число ножей,

Кисп - коэф. использования ножа.

Кпуст – коэф, учитывающий пустоты.

V=*d2*h/4 –для дисковой; V=L*2*2h для барабанной; V=L**h*(d1+d) – для конической. L –длина барабана.


3.МЖФ ТЕХНОЛОГИЧЕСКИЕ ЛИНИИ КОРМОЦЕХОВ.

Несбалансированный рацион приводит к перерасходу кормов, снижению продуктивности, увеличению себестоимости.

БСК-25 КОРК-5



транспортёр




корне силос,

плоды солома

ИКС-5М ПДК-10

АПК-10



мойка+измельчение

сухая обработка

загрузка


Кормоцеха для производства концентратов – для улучшения вкусовых качеств, уничтожения микробов, повышения питательности


загрузка пропарочная колонка






эжектор

транспортёр

Сложные кормоцеха : ЛОС-1(2,3). Поточные линии, входящие в ЛОС: 1) обработка соломы; 2) термическая или термохимическая обработка соломы; 3) травяная резка; 4) прессование; 5) временное накопление кормов.

Специализированные кормоцеха : 1) для приготовления сухих рассыпчатых кормов, пригот. влажных мешанок, пригот. жидких кормов. 2) для пригот. концентратов. 3) для пригот. гидропонных кормов. 4) для получения зелёных водорослей.

4.МЖФ Вентиляция животнов. помещений.

Бывает: естественная, ест. с искусственной вытяжкой, искусственные приток и вытяжка, искусственные приток и вытяжка с подогревом.

Кратность воздухообмена: n=C/V, С-воздухообмен, V-объём помещения. n<3-естественная, n>3-ис- куственная, n>5-искуств. с подогревом.

Расчет: по загазованности: С=qi / q1-q2; qi –количество вредных газов, выделяемых одним животным; q1- кол-во газов допустимое, q2- кол-во вредных газов в свежем воздухе; по влажности: С=qi / (q1-q2)в; qi количество влаги, выделяемой одним животным, в – плотность воздуха, (q1-q2) – по анемометру; по теплу: С=Q/(Iв-Iн)* в; Q-кол-во тепла выделяемое животными, I-теплосодержание воздуха внутри и снаружи.

Естественная вентиляция:

обеспечивается разностью плотностей воздуха и ветрами ( аэрация)

Инфильтрация - неучтённая вентиляция через стены, окна, двери. L=0.25h(rн-rв)*I*H/rв, h-высота расположения окон; I-коэффициент воздухопроводности; Н-общая площадь окон. Площадь шахт: Sобщ.шахтmax/(3600*v),v-скорость, Sприточн.=0,7*Sобщ. .

Искусственная: если Q>1000 м3/ч – несколько вентиляторов. Диаметр воздуховодов: d=(Q/2v)--2 /30; v=10-15м/с.

Напор вентилятора: Н=Ндин+Нтрен+Нмп,

Ндин – для сообщения воздуху скорости, Нтрен – лдя преодоления трения воздуха о стенки, Нмп – для преод. местных потерь.

Ндин= rн*v/(2*g); Нтрен=в*v* rн*l/(2gd) [в- гидравлический коэф. сопротивления; l-длина трубопровода]; Нмп=*v2rн/2g.

По Q и Н определяют № вентилятора, КПД.

Nвент=Q*H/(3,6*106*вент*передачи).


5.МЖФ Принцип работы машин для измельчения стебельчатых кормов.

Способ обработки зависит от вида корма, то есть от плотности, угла естественного откоса, коэф. трения.


а в д




б г е





До а –предварительное сжатие питающим механизмом; аб, вг, де – сжатие материала. Стебель обладает упруго-пластинчато-вязкими свойствами.

Резание: безопорное с опорой двухопорное





-угол скольжения.

Резание бывает:

1.нормальное (рубка) =0

2.наклонным ножом.

Появляется тангенсальная сила Т,

но она маленькая и не влияет на

резание <, q<q0; q снижают: Т N

Т, но мало; эффект пилы.

3.Скользящее резание.

Т уже значительное, >, q<q0;

q снижают: значимость Т;

эффект пилы; трансформация Т N

угла заточки.

При увеличении угла скольжения появляется трение между разрезанным материалом и боковыми гранями ножа. При >450 возрастает усилие на резание.

Угол защемления , если он больше 2, солому необходимо удерживать.






6.МЖФ Охладители молока.

Цель-замедление жизнедеятельности микроорганизмов. Охлаждают водой и рассолом.

Трубчатые и пластинчатые. Однопакетные (каждая порция молока встречается с холодной стенкой 1 раз) и двухпакетные. Для охлаждения молока ниже 30 применяют пластинчатые двухсекционные с рассолом.

Охлаждение молока в потоке:


1 2 3




4 5



1-фильтр; 2-охладитель; 3-ёмкость для молока; 4-холодильная машине; 5 – водяной насос.

Резервуары-охладители: с промежуточным охлаждением (РПО-1,6 [2.5], ТОМ-2А) и непосредственным.

Расчёт:

тепловой график








Тепловой баланс: QпрСпр(tн- tк)=nвМвСв(tк- tн)

молоко вода

С-теплоёмкость;n= Мвпр - кратность расхода хладоагента. nводы=2,5-3; nрассола=1,5-2

S=Q/K*tcр; К-общий коэф. теплоёмкости. tcр-среднелогарифмическая разность температур.

-коэф. теплопередачи от молока к стенке; 2 –коэф. теплопередачи от стенки к воде; -толщина стенки; -коэф. теплопроводности.

Кол-во параллельных потоков в охладителе:

m=Mпр/(1000*vпр*в*h); в-ширина пластины; h-толщина прокладки


7.МЖФ Принцип работы молотковой дробилки.








Раб. органы: решето ( толщина 3-8 мм, не должно вибрировать. Решето чаще из-за забивания изготавливают не с цилиндрическими отверстиями, а с расширяющимися книзу); дека (то же решето, но с глухими отверстиями) [ и дека и решето обеспечивают вторичный удар зерна по закрытой поверхности]; молоток ( чем меньше площадь удара молотка о зерно, ем больше контактные напряжения, следовательно легче разрушить, масса молотка – 65-200 гр)



Виды измельчения в дробилке: удар влёт, истирание, удар о решето или деку. Регулируют степень измельчения подбором решет. Точность зависит от толщины отверстия в решете. Отводится вентилятором, следовательно необходим циклон для отделения дерти от воздуха.



8.МЖФ Особенности технологического расчёта доильного агрегата Ёлочки.

Кол-во аппаратов для 1 мастера: nопт=(tмаш+tрр)/ tрр

tмр=tмаш/(n-1); tрр=24-30 сек. tрр-ручные работы.

Q=2*n*60/tзс.

n-кол-во аппаратов в групповом стойле; tзс-время занятости стойла.

tзс=tмаш +tрр+tвпуск группы +tвыпуск.

Q-пропускная способность доильной установки.




9.МЖФ Машины для мойки и сухой очистки картофеля.

Тип: МП – барабанная мойка.

выгрузной ковш.


ванна с водой






Кулачковая мойка









Шнековая: ИКМ-5 Центробежная: МРК-5










ИКМ-Ф-10 – БЕЗВАЛЬНЫЙ ШНЕК.

Корнемойка с использованием ультразвука:

100% удаление грязи, но сложное оборудование.


Сухая очистка:

1.Шнек с мелкой нарезкой





2.Виброрешето.




циклон




тёплый воздух с избыточным давлением



10.МЖФ Особенности технологического расчёта доильного агрегата Ёлочки.

nопт=(tмаш+tрр)/ tрр

q=60/tзс.

n-кол-во аппаратов в групповом стойле; tзс-время занятости стойла.

tзс=tмаш +tрр+tвпуск группы +tвыпуск.


11.МЖФ Назначение и работа объёмных дозаторов.

Дозирование – процесс отмеривания заданного количества материала с определённой точностью. Основания для выбора точности: зоотехнические требования, технологические требования, экономические соображения.

Различают массовое (погрешность до 2%) и объёмное (до 3%) дозирование. Дозирование устройства обеспечивается самотёком или побудителями.

Типы дозаторов: барабанные, тарельчатые, транспортёрные, ковшовые.

Барабанные:

Ячеистый Гладкий Рифлёный Лопастной

2 и 3 с побудителями, 1 и 4 –сами способны к подаче.








12.МЖФ Определение пропускной способности доильного агрегата типа АДМ-8

Количество аппаратов для всего стада:

nф=mKtд/Тд; m-колич-во коров; К-коэф. дойности стада, t-время доения стада; Т-время доения одной коровы.

Кол-во аппаратов для одного мастера: n=tмаш+ Stручн.работ /Stручн.работ; Stручн.работ=tпод.кор.+ tвкл.аппарата +tпостан.стак. +tперех +tпер.ДА +tзак.операц

Кол-во коров выдаиваемых 1 аппаратом.

q=60/tзан.аппар. tзан.аппар.=tмаш+ Stручн.работ

Пропускная способность: Q=q*n*N; N=Qнеобх /Qфакт Qнеобх =m*K/Tд; Q=60/ n*N* tмаш Stручн.работ


13.МЖФ Смесители кормов.

Классификация: по характеру раб. процесса ( непрерывного и периодического ); по виду смешиваемых компонентов ( а\ для сухих комп., б\ влажных и рассыпчатых, в\ жидких комп. ); по организации раб. процесса ( смесители с вращающейся камерой и с неподвижной камерой ).

Барабанные смесители



Мешалочные смесители: шнековые, лопастные – для сыпучих и вязких кормов; турбинные, пропеллерные – для жидких.

В зависимости от скорости вращения вала: быстроходные (К<30) и тихоходные (К>30). К – показатель кинематического режима.

Мешалочные смесители: одно- и двухвальные.

СМ-1 – 2-х вальный. Q до 20 т/ч






Смеситель-запарник С-12А Смеситель-измельчитель

периодич. действия. ИСК-5






шнек


Одновальные: ВКС-3М – лопастной для обработки пищевых отходов; 3С-6 - смеситель+термическая обработка; РСП-10 – смеситель-раздатчик ( с трактором); АСП-10 - смеситель-раздатчик (с автомобилем)





14.МЖФ Определение производительности вакуумного насоса.

Бывают поршневые, пластинчато-статорные, пластинчато-роторные, водокольцевые.

Необходимая производительность насоса: 1)при работе одного ДА: Q=Кр*V*n*(1-Кп)*Кm; Кр – коэф. компенсирующий работу регулятора, V – объём камер, из которых необходимо откачать воздух, n- частота пульсаций; Кп- коэф. учитывающий неплотности в аппаратуре; Кm – манометрический коэф. 2)для обеспечения работы доильных аппаратов.: Q=Q1 +Q2 +Q3 +…+Qn +Qh; Q1 – для работы доильных аппаратов, Q2 – работа манипулятора, Q3 –работа кормораздатчика,Qn –открывание и закрывание дверей; Qh-работа групповых счётчиков

Производительность ротационного насоса:

Q=D*L*e*Z**sin*Кз*Км/2; D – диаметр статора. L – длинна статора, e – величина эксцентриситета, Z – кол-во лопаток, - угловая скорость, - угол обхвата. Кз – коэф. заполнения замкнутого объёма, Км – манометрический коэф.

Водокольцевые насосы.

Нет трущихся поверхностей, не нужна смазка, высокая производительность.

Q=V*Z*n*Кз*Км; Q-подача; V-объём замкнутой ячейки; Z-кол-во ячеек; n-частота вращения ротора; Кз-коэффициент заполнения ячейки (0,6-0,8); Км- манометрический коэф (h/101,3).

V=S*L; S=*(y2-r2)-Z*(y-r); r-радиус ротора; y- максимальное расстояние от центра вращения ротора до водяного кольца.


15.МЖФ Машины для уплотнения кормов. Грануляторы.

По конструкции раб. органов делятся:

1)поршневые, 2)рулонные, 3)шнековые, 4)вальцовые, 5)транспортёрные, 6) кольцевые

Вальцовые: Шнековые








Поршневые: открытые закрытые



Кольцовые:

Матрица

Траверса

Роллер

Фильеры

Нож


16.МЖФ Технологический расчёт линейной доильной установки

1.Определение общего числа доильных аппаратов.

nфакт=mдк*t/T; mдк-кол-во дойных коров. t-время обслуживания одной коровы; Т-время доения всего стада (90-135 мин.)

mдк=m*к; m-кол-во коров в стаде; к-коэф. дойности стада.

2.Обоснование выбора типа доильной машины.

Привязное содержание - линейная, в вёдра или молокопровод. Беспривязное – ёлочка, тандем.

3.Определение показателей загрузки ДУ.

nопт для 1 оператора=1…5

tцикла=nопт* tручн.работ; tцикла =tмаш+ tручн.работ +tмашин-ручных

nопт=( tмаш+ tручн.работ +tмашин-ручных)/ Stручн.работ.

Q-пропускная способность ДУ.

Q=q* nопт*N; q-кол-во коров выдаиваемаих за 1 час 1 оператором; N-кол-во операторов.

q=60/tзанятости аппарата; tза= tмаш+ tручн.работ;

N=Qнеобх /Qфакт; Qфакт = nопт*N*60/ (tмаш+ Stручн.работ);

Qнеобх =mд


17.МЖФ Технологические линии раздачи кормов стационарными раздатчиками.

3 варианта: 1)РК-50, ТРП-100А – с верхним расположением; 2)РВК-Ф-74, КРС-15 транспортёр в кормушке, у КЛК-75, КЛО-75 рабочий орган – стальная лента. 3)ТРП-Ф-15 – воздуховод.

РВК-Ф-74.

ЛЕНТА

ЦЕПЬ


Скорость при ручной загрузке 0,13 м/с, при машинной – 0,5 м/с. Q до 25 т/ч. Ширина 1 м.

РК-50 –транспортёр над кормушкой.

Ленточный транспортёр

скребковый трансп.

кормушка



18.МЖФ Расчёт регенератора.


t2

tp

tн

tx




=(tp-tx)/(t2-tx); -коэф. регенерации. tp= t2-;

=(1-)/(t2-tx) ; t=(1-)*(t2-tx);

Q=M*Cm*(t2-tx)=S*k*tср=S*k*t; x=S*k/(S*k+M*Cm)

k-коэф. теплопередачи. S-площадь пластин.


]


19.МЖФ Раздача кормов мобильными кормораздатчиками.

Недостатки: непроизводительно используется площадь коровника, в условиях холодных климатических зон понижается тепловой режим, выхлопные газы.

КТУ-10А – любой корм, кроме концентратов и сена. Подаёт в кормушку не выше 0,75 м. Недостаток: ширина колеи не менее 2,4 м, высота – 2,1 м. На основе КТУ созданы КТ-9, КТ-11, КТ-15 с более лёгкой регулировкой нормы выдачи и различным объёмом кузова.

РММ-5,0, РММ-Ф-6,0 – ширина прохода 1,6-1,8 м.

Скорость раздачи: 1,7-2,1 км/ч. Преимущества мобильных: легко заменить, отремонтировать при выходе из строя.


20.МЖФ Расчёт площади поверхности пастеризатора, определение количества пара.

Пастеризация-тепловая обработка молока с целью уничтожения бактерий при условии сохранения свойств и качеств молока.


t пар

tгор


молоко


tхол

S

Q=Mm*(tгор­-tхол); G=Q/(iп-iк)*

G-кол-во пара; iп-энтальпия пара; iк­-энтальпия конденсатора; h-КПД пастеризатора.

S=Q/(k*tср); k-коэф. теплопроводности.


21.МЖФ Машины для раздачи кормов на свинофермах.

КУТ-3,0А, КУТ-3Б – мобильные кормораздатчики (Б- с выездом к кормоцеху).

КС-1,5: кузов

шнек

смесительные лопатки

выгруз. транспортёр



V=2 м3; Q=30-70 т/ч

РС-5А: кузов горизонтальный, остальное- так же.

КСП-0,8: раздача сухих, влажных и жидких кормов на маточниках. Имеет кузов для влажных мешанок, 2 бункера для сухих кормов, 2 бидона с молоком.

КУС-Ф-2: рельсы под клетками.

Все раздатчики – смесители.

Стационарные:

РКС-3000 – тросошайбовый раздатчик.







Кормопроводы – для кормления жидкими мешанками.


22.МЖФ Определение угла коэф. скольжения при резании стебельчатых материалов.

О R

r

T vN

C vT

N

v F

- угол скользящего резания.

Отрезок соединяющий центр вращения с исследуемой точкой – радиус вектор, - угол скольжения, с- кратчайшее расстояние от центра вращения до лезвия. vн-нормальная скорость, vt- тангенсальная;

vн=v*cos; vt=v*sin; cost=c/r; sint=u/r; v=r; vн=c; vt=u. sint/ cost=tg-коэф. скольжения. При снижения угла скольжения снижается сила внедрения ножа в материал.

Обоснование криволинейности ножа: для того, что бы t удержать около оптимальной точки нож ломают, то есть . При этом рассчитывают каждый участок. Но он не очень удобен в эксплуатации. Поэтому применяют криволинейный нож, изогнутый по окружности. Практически выполнить нож с неизменным t не возможно.


23.МЖФ Механизация раздачи кормов на птицефабриках и птицефермах.

Раздача кормов по кормушкам по всей длине клеточной батареи должна производится за один приём. В возрасте до 140 дней цыплята выращиваются в батареях КБУ-3 (трехъярусная) или БГО-140 (одноярусная), при этом раздача корма производится цепочно-шайбовым транспортёром, а поение – из ниппельных поилок.

Для содержания промышленного стада кур-несушек применяют двухрядные четырёхъярусные батареи КБН или четырёхрядные одноярусные батареи ОБН-1. Бункера в КБН соединены пересыпными патрубками. Выдача корма в желобковые кормушки происходит самотёком и регулируется изменением через общую тягу степени открытия заслонок. Корм выдаётся при прямом и обратном ходе кормораздатчика, который одновременно служит и яйцесборником.

В настоящее время применяются и спирально-винтовые кормораздатчики. Его рабочий орган – гибкий пластиковый кормопровод со спиралью из проволоки. Из расходного бункера корм подаётся спирально-винтовым транспортёром в приёмные бункера кормораздатчиков, питающих бункерные кормушки.

При напольном содержании ремонтного молодняка кур применяют комплекты оборудования КРМ-12 или КРМ-18. Поточные линии раздачи кормов включают наружный бункер для хранения и загрузки сухих кормов в бункер кормораздатчика и цепочно-шайбовый кормораздатчик с бункерными кормушками. Для напольного содержания цыплят мясных пород используют комплексы ЦБК-10В и ЦБК-20В на 10 и 20 тыс. голов. В их комплект входят наружный бункер-хранилище, цепочно-шайбовый кормораздатчик КЦБ с бункерными кормушками, система поения с чашечными поилками и система электрооборудования. Для механизации технологических процессов при выращивании бройлеров выпускаются комплекты оборудования БР10Ц и БР20Ц, отличие от ЦБК – имеют цепной кормораздатчик с желобковыми кормушками, а вместо чашечных поилок – проточные желобковые.


24.МЖФ Определение момента резания стебельчатых материалов.

М=F*r; M=MN+MT( касательная и нормальная силы)

MN=r*N*cos; MT=r*T*sin; - угол между лезвием и радиус-вектором. М=r*( N*cost+ T*sint).

M=r*N*cost*(1+tgt*T/N); N=q*l; q-нормальное дав-ление; l-длина на которой действует нож.

М=rql*cost(1+f `*tgt); f `-коэф. скользящего резания.

f `=T/N


25.МЖФ Погрузчики кормов, принцип их работы и технология оценки.

погрузчики кормов

ПЭ-Ф-1,0 – универсальный погр. экскаватор (силос, сенаж, грубые корма). Достоинства: универсальность ( грузит практически все корма, может быть использован на погрузке всех других с/х грузов ). Недостатки: погрузка слежавшихся грузов пластами, что влияет на равномерность раздачи).

ПГ-0,2А – то же, но грузоподъемность меньше 200кг за раз.

ФН-1,4 – погрузчик навесной, 1,4 м ширина захвата, Для погрузки длинно-стебельчатых кормов из скирд, силоса из траншей, подборка солома со стерни. Производительность на соломе 4 т/ч, подъём стрелы 5,2 м.

ПСС-5,5 более универсален. Силос и сенаж, то есть слежавшийся корм. Достоинство: высокая производительность до 40 т/ч, высота подъёма 5,5 м, ширина захвата 1,4 м, глубина врезки 1м.

ПС-Ф-5 – снабжён измельчителем кормов.

ПРК-Ф-0,4-1 – сочетает в себе РММ-5,0+ПГ-0,2А+бульдозер.

Производительность: Q=V*/t, т/ч. V-объём корма, срезаемого за час; t – время цикла.

t=t1+t2+t3; t1-время рабочего цикла, t2-время установившегося движения; t3-время подъёма стрелы.

V=Rh/1800; R-радиус стрелы, h-глубина фрезерования, -угол поворота стрелы.


26.МЖФ Анализ работы дисковой соломорезки.

О1

R

R1

r 1 2 III

2

II IV

О1-центр кривизны ножа. =0,7-0,8R; -рабочий угол

Мрез=r*cos*l*q(1+f ` tg )

ср=( max+min)/2; w-средняя угловая скорость.

Степень неравномерности: =( max-min)/2; d=3-7%

Мрез.ср. даёт двигатель; Аизб=I*(ср)2 d; Аизб=Fизб*м*y; I=Mдв/(dw/dt); Мдв=Мрез.ср.*(5/3); Мрез.ср.=F*м/b` ; N=Mдв/ср

Мрез



Аизб

Мрез.ср




w y









27.МЖФ Машины для раздачи кормов на малых фермах.

Раздача кормов: вручную, с тракторной телеги, ПРК-Ф-0,4 "Зорька"- погрузчик-раздатчик. Сочетание 3 машин в одной. Это РММ-5,0+ПГ-0,2А+бульдозер спереди. Можно убирать навоз. РММ-5,0 – малогабаритный раздатчик, смонтированный сзади погрузчика ПГ-0,2



28.МЖФ Особенности работы и анализ барабанного измельчающего аппарата.

vб

IV I h

III II

vб vn

Располагают горловину так, что бы не выталкивало и был срез, следовательно в верхней части второго квадранта. h=а*D*vn/2vб





r



горловина

Перекрытие ножей = а (толщине слоя), следовательно = в любом положении ножа и c=24-300. Перекрытие для постоянного момента.

Мрез





Большие динамические преимущества барабанного режущего аппарата обусловлены постоянной нагрузкой на вал и отсутствием необходимости устанавливать маховик. Недостатки: необходимость подавать материал тонким слоем и спиральные ножи сложны в изготовлении и заточке.


29.МЖФ Механизация уборки навоза внутри животноводческих помещений.

Мобильные агрегаты: трактор типа МТЗ или ЛТЗ с бульдозерной навеской для удаления навоза из открытых навозных проходов помещений для КРС и его подачи в поперечный канал или выталкивания в хранилище.

Транспортёры:

1.Цепочно-скребковые транспортёры кругового движения ТСН-2,0Б и ТСН-160Б ( состоит из горизонтального транспортёра и наклонного транспортёра с приводами и шкафа управления ). Горизонтальные транспортёры устанавливают в навозных каналах, проложенных по всей длине помещения рядом со стойлами и соединённых в проходах поперечными каналами в замкнутый четырёхугольник.

2.Скребковые транспортёры ТС-1 с возвратно-поступательным перемещением скребков. Для удаления навоза из свинарников: продольный – из помещений в навозный канал поперечного транспортёра, поперечный – из навозного канала в навозосборник. Состоит из: приводной станции с натяжным устройством, отклоняющего блока, каретки, тяговой цепи, тяг. Рабочий орган – каретки со скребками. При движении каретки навоз перемещается только в одном направлении. При рабочем ходе скребок каретки занимает вертикальное положение и перемещает навоз по каналу, при холостом -–откидывается на шарнирах вверх, оставляя навоз в каналах без движения.

3.Скребковые транспортёры с возвратно-поступа­тельным движением скребков (штанговые ) – конвейерные установки с возвратно-поступательным движением скребков. Благодаря возвратно-поступа-тельному движению навоз подаётся кратчайшим путём. При двух- и четырёхрядном расположении стойл коровников применяют навозоуборочную установку УН-3,0, в которую входят два горизонтальных штанговых транспортёра возвратно-поступательного действия с общим приводом.

4.Скреперные установки с возвратно-поступательным движением рабочих органов ( дельта-скреперов ) обеспечивают механическую транспортировку навоза из животноводческих помещений и его подачу с помощью специальных поперечных навозоуборочных конвейеров в навозосборники или транспортное средство. Основные сборочные единицы УС-Ф-170: рабочий контур, скреперы, промежуточные штанги, поворотные устройства, привод. Установка работает в автоматическом режиме. При нажатии кнопки "Вперёд" в движение приводится рабочий контур. Перемещаясь по навозному каналу, скребки раскрываются, захватывают находящийся в навозном канале навоз и подают его в сторону поперечного канала. В это время скреперы, находящиеся в соседнем навозном проходе со сложенными скреперами совершают холостой ход. При подходе переднего скрепера к люку сбрасывания в поперечный канал включается механизм реверсирования. При рабочем ходе передний скрепер сбрасывает навоз в поперечный канал, а задний подводит порцию только до середины навозного прохода.

5.Навозоуборочный конвейер КНП-10. Принимает навоз от навозоуборочных транспортёров ТСН-160А, ТСН-160, ТСН30,Б И ТСН-2Б, скреперных установок УС-15, УС-250, УС-Ф-170, а также мобильных средств уборки навоза АМН-Ф-20; транспортирует навоз любой консистенции на расстояние до 80 м.; направляет навоз на наклонный транспортёр. Конвейер состоит из приводной и поворотной секции, круглозвенной цепи со скребками, металлических корыт, пускозащитной аппаратуры.


Гидравлические системы.

При всех системах кроме бесканального смыва в станках для содержания животных устраивают заглублёные продольные каналы, которые сверху перекрывают решётками. Через них навоз поступает в продольные каналы, соединённые с поперечными каналами. Последние расположены на 300-350 мм ниже первых и выходят за пределы животнов. фермы в коллектор. Поперечные каналы и коллектор имеют уклон 0,01-0,03.

1.Самотечная система непрерывного действия основана на принципе самопередвижения смеси. Система действует непрерывно по мере поступления навозной массы через щели надканальных решёток и её стекания через открытый конец канала. Навозная смесь непрерывно вытекает из канала.

2. Самотечная система периодического действия отличается от предыдущей тем, что в ней предусмотрено накопление навоз в навозоприёмных каналах, выход которых перекрыт шиберами. Навозная масса накапливается в течение нескольких суток. Каналы выполнены с углом не менее 0,005. Для периодического спуска массы открывают шибера.

3.Система прямого гидросмыва навоза. Продольные каналы устраивают с углом 0,007-0,01, а поперечные – 0,02-0,03. За пределами жив. помещений и на участке до приёмного резервуара-усредителя поперечные каналы заменяют трубами. Для удаления массы вода подаётся под давлением 0,2-0,3 Мпа.

4.Рециркуляционная система предусматривает ежедневную промывку навозоприёмных каналов жидкой фракцией навоза, предварительно отстоянной, обеззараженной и дезодорированной, или жидкой фракцией, прошедшей биологическую очистку и предварительное карантирование.

5.Бесканальный гидросмыв навоза с напольных мест дефекации проводят с помощью гидросмывных установок, значительно сокращающих по сравнению с прямым гидросмывом количесво расходуемой воды, эксплуатационные расходы и капитальные вложения на строительство. При таком способе не требуется устройства каналов и решётчатых полов, так как зона дефекации примыкает непосредственно к полу логова, а гидросмывные установки монтируют в проёмах разделительных установок.


30.МЖФ Анализ работы пульсатора доильного аппарата ( на примере АДУ-1 )


III

II


насос I КОЛЛЕКТОР


VI



Сосание: FIV-I – СНИЖАЕТСЯ; FIII-IIconst; в IVh1

Массаж: h1 h2; FIV-I – возрастает; FII-Iconst;

Стакан:


ПК

МК

сосание

h

h

массаж

h

0

h=46-48кПа; n=705 min-1; С:М = 70:30; t=5мин.


31.МЖФ Условия применения транспортёра типа УС, их конструкция.

Скреперные установки с возвратно-поступательным движением рабочих органов ( дельта-скреперов ) обеспечивают механическую транспортировку навоза из животноводческих помещений и его подачу с помощью специальных поперечных навозоуборочных конвейеров в навозосборники или транспортное средство.

Скреперная установка УС-Ф-170 предназначена для уборки бесподстилочного навоза влажностью до 90% из открытых навозных проходов длинной до 80 м. при боксовом и комбибоксовом содержании. Она может работать как в ручном, так и автоматическом режиме. Основные сборочные единицы УС-Ф-170: рабочий контур, скреперы, промежуточные штанги, поворотные устройства, привод. Тяговый орган – рабочий контур, состоящий из двух отрезков цепи, двух промежуточных штанг и четырёх скреперов. Складывающийся скрепер предназначен для захвата, перемещения по каналу и возвращения навоза в исходное положение. Он состоит из ползуна, шарнира, натяжного устройства и двух скребков. Шарнир приварен к ползуну. К шарниру присоединены два скребка, каждый из которых связан с ползуном цепью. На конце скребков болтами прикреплены чистики для очистки стенок навозного канала.

Установка работает в автоматическом режиме. При нажатии кнопки "Вперёд" в движение приводится рабочий контур. Перемещаясь по навозному каналу, скребки раскрываются, захватывают находящийся в навозном канале навоз и подают его в сторону поперечного канала. В это время скреперы, находящиеся в соседнем навозном проходе со сложенными скреперами совершают холостой ход. При подходе переднего скрепера к люку сбрасывания в поперечный канал включается механизм реверсирования. При рабочем ходе передний скрепер сбрасывает навоз в поперечный канал, а задний подводит порцию только до середины навозного прохода. . М







32.МЖФ Расчёт питающего механизма соломорезки, практич. применение расчёта при регулировке длины резания.





А а а`





Fn dFn

h=r*cos; A+2h=a+2r; A-a=2r- 2r*cos

D=(A-a)(1- cos); cos=1/ (1-tg2)

tg=tg=f `;

По данной формуле D очень большой, поэтому вальцы изготавливают зубчатые или поджимают один из них ( при этом а/А=0,4-0,6).

Питающий механизм должен выполнять функции: затягивать, уплотнять, проталкивать слой к режущему аппарату.

Что бы было затягивание, vбvn.


33.МЖФ Машины для транспортировки навоза по трубам.

Поршневая установка для транспортировки навоза по трубам из животноводческих помещений в навозохранилище. Она работает с подстилочным и бесподстилочным навозом, с влажностью >= 78%, длина соломы менее 10 см.

Состоит из корпуса, поршня, гид-

ропривода, цилиндра, клапана,

загрузочной воронки, трубопровода.

Дальность – 300-350 метров. Начало: поршень в исходном положении, клапан закрывает вход в навозопровод, окно загрузочной воронки закрыто. При движении поршня вправо клапан открывается и навоз поступает в камеру. При движении поршня в исходное состояние в камере создаётся давление, под действием которого навоз проталкивается по трубопроводу.


34.МЖФ Условия работы барабанной и кулачковой моек. Определение производительности корнеклубнемоек.

Барабанная мойка: Q=Slk1k2; k1-коэф. заполнения барабана; k2-коэф. учитывающий пустоты между клубнями. S – площадь сечения барабана.

Кулачковая мойка: Q=0.5*(dш2-dв2)l n k1k2k3;

dш;dв – диаметры шнека и вала. l-шаг шнека. k3-коэф. снижения производительности от разорванного шнека.

Шнековая: Q=0.5*(dш2-dв2)l n k1k2k4; k4-из таблиц.


35.МЖФ Механизация работ в навозохранилищах.

ККС-Ф-2. – козловой кран для выгрузки навоза и компоста из хранилища, погрузки на транспортное средство, послойной укладки навоза с торфом и их перемещения. Состоит из моста с опорами, перемещающихся по рельсам, подъёмника с грейфером, кабины управления и эл. оборудования. На площадке компостирования – погрузчик ПНД-250 навешанный на ДТ-75М. Он предназначен для рыхления и погрузки из буртов органоминеральных смесей, навоза, торфа, компоста. Состоит из рамы, выгрузного и приёмного транспортёра. Заборный рабочий орган с фрезой и ковшом. Q=150-210 т/ч, В=2,4 м. h=3м.


36.МЖФ Определение производительности шнековых корнеклубнемоек. Обоснование работы камнеуловителя.

Q=0.5*(dш2-dв2)l n k1k2k4; k4-из таблиц.


37.МЖФ Переработка навоза методом биогазового сбраживания.

1.Получение энергии, 2.Переработка загрязняющих окружающую среду веществ, 3.Получение эффективного безопасного удобрения.

Из 1 тонны 350-600 м3 газа. 1м3 биогаза = 1,6 кВт электроэнергии. Биогаз – продукт анаэробного сбраживания исходного материала без О2.

Условия: 1)отсутствие свободного О2; 2)высокая влажность (>50%); 3)определённая температура; 4)малая освещенность; 5)щелочная среда; 6) достаточное кол-во азота.

3 этапа: 1.кислотообразующий; 2.метановые бактерии синтезируют из кислот и кислотообразующих бактерий. 3.

Состав биогаза: 60% метана, 36,6% СО2; 3% Н2; 0,2% О2; 0,2% Н2S.

Бактерии: психрофильные бактерии при 150С; мехирильные бактерии при 350С; термофильные бактерии при 550С. Условия: бактериям нужна зона прилипания, исходную массу измельчают и перемешивают во время, температурный режим ( до 350С), определённое соотношение С и N.


38.МЖФ Элементы расчёта дозаторов. Обоснование способов регулировок.









Q=VnZ; V-объём сыпучего материала снимаемого одним чистиком за один оборот. V=2RS; S=h2/2tg

Q=2RnZh2/2tg

Дозаторы непрерывного действия:





ДАЧ-1 - дозатор ковшового типа.

Дозирование жидких компонентов:







Дозаторы длинно-стебельчатых кормов:

КТУ-10; РММ-6; РММ-5; ПДК-10.


39.МЖФ Организация технического обслуживания машин животноводческих ферм.

ТО проводится по системе ППРТОЖ. Виды ремонтно-технических обслуживаний: 1) ЕТО; 2) ТО-1(всё оборудование) и ТО-2 ( сложные машины ). 3) обслуживание при хранении; 4) техосмотр; 5) Ремонт.

Группы оборуд. по ППРТОЖ:

1.обор. для водоснабжения и поения

2.обор. для транспортировки и раздачи кормов

3.доильные машины и машины по первичной обработке молока.

4. обор. для уборки и утилизации навоза

5.обор. для обеспечения микроклимата

6.обор. для стригальных пунктов

7. обор. для птицефабрик и птицеферм

8.стойло-станочное оборуд.

9.ветеринаро-санитарное обор. по уходу за жив-ми.

10. обор. для кормоцехов.

ТО при хранении в соответсвии с рекомендациями заводов изготовителей и правилами хранения с/х техники.

Техосмотр – 2 раза в год. Ремонт – в кратчайшие сроки.

Принципы и формы организации ТО: принципы:

Разделение, специализация и концентрация труда; Обязательная окупаемость; Высокая мобильность и оперативность. формы:

1.Силами хозяйства; 2.Часть работ - силами хоз-ва, часть – сторонними организациями. 3. сторонними организациями (собственными – только ЕТО )


40.МЖФ Смесители кормов. Анализ процесса смешивания двух- и многокомпонентных кормов. Качество смеси.

Барабанные смесители



Мешалочные смесители: шнековые, лопастные – для сыпучих и вязких кормов; турбинные, пропеллерные – для жидких.

В зависимости от скорости вращения вала: быстроходные (К<30) и тихоходные (К>30). К – показатель кинематического режима.

Мешалочные смесители: одно- и двухвальные.

СМ-1 – 2-х вальный. Q до 20 т/ч


Случайные файлы

Файл
3069-1.rtf
dz3_uslovie.doc
35255.rtf
175194.rtf
147469.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.