Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов (11911)

Посмотреть архив целиком

Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов

Ч. Н. Варнаков, А. П. Козлов, С. К. Сеит-Аблаева, А. И. Романенко, Н. Т. Васенин, В. Ф. Ануфриенко, 3. Р. Исмагилов, В. Н. Пармой

Характеристика аморфного углеродного материала (АУМ) только по элементному составу и данным, полученным на основе анализа изотерм адсорбции азота, не является достаточной. Показано, что в процессе образования АУМ, в частности из ароматических предшественников с различными функциональными группами в условиях термокаталитического синтеза при различных времени и температуре карбонизации, образуется углеродный материал, обладающий как одномерной, так и трехмерной проводимостью.

Одномерная проводимость, возможно, связана с образованием карбина, как промежуточной стадии образования АУМ при температурах порядка 700 °С, либо при температуре 900 °С и небольшом (до 15 минут) времени карбонизации. Предполагается, что одномерная проводимость может влиять на выходную мощность топливного элемента, если АУМ используется в качестве носителя катализатора катодной мембраны.

Ранее методами электронной спектроскопии высокого разрешения (HRTEM) и дифракции электронов было показано [1], что аморфный углеродный материал, в отличие от активированного угля, волокнистых углеродных материалов и наноуглерода, состоит из структуры, сформированной графитоподобными слоями (графемами) моноатомной толщины (порядка 0,3 нм). Аналогичные результаты получены и при рентгенографических исследованиях образцов, приготовленных из ароматических соединений. Когда толщина поверхностного слоя приближается к молекулярным размерам, наночастица будет более рыхлой по сравнению с объемной конденсированной фазой, причем вся наночастица будет неоднородной [2]. Эта неоднородность дает разнообразие свойств углеродного материала, что может проявляться как в различных парамагнитных свойствах углеродного материала, так и в разной его проводимости.

В таблице представлены характеристики образцов АУМ, полученных из ароматических соединений с различными функциональными группами методом термокаталитического синтеза (карбонизация при 700—800 °С в присутствии щелочи — гидроксида натрия или калия, либо их эквимолярной смеси) [1, 3]. Элементный анализ образцов, выполненный по стандарту ISO 625-75 на приборе CarloErba с CHN анализатором, показал наличие углерода (89—90%(масс.)), водорода (0,5—0,6%(масс.)) и кислорода (остальное). Азот и сера не были обнаружены. Удельная поверхность по БЭТ, объем и поверхность микропор полученных образцов АУМ определяли на установке ASAP-2400 (Micromeritics) по адсорбции азота при 77 К. Перед измерениями проводили предварительную тренировку образцов при 300 °С и остаточном давлении менее 0,001 мм рт.ст. до прекращения газовыделения. После тренировки до измерения изотермы адсорбции контакт с атмосферой был исключен. Изотермы адсорбции азота записывали в диапазоне относительных давлений от 0,005 до 0,995 и проводили их стандартную обработку с расчетом суммарной поверхности методом БЭТ, объема микропор с размером до 2 нм и поверхности мезопор, остающейся после заполнения микропор. Полученные образцы АУМ можно представить, подобно изомерам, как гомологический ряд одного состава с разной структурой поверхности [2]. Одной из характерных особенностей этого гомологического ряда АУМ является наличие более 80% микропор.

Полученные образцы АУМ были испытаны в качестве носителей платиновых катализаторов для катодов топливных элементов с протонообменной мембраной. Лучшие показатели по выходной мощности топливного элемента получены на АУМ-1 — образце из нефтяного кокса [4]. Для этого образца АУМ характерна большая интенсивность спектра ЭПР, достигающая 1020 спин/г.

Для сравнения в качестве носителей были использованы углеродные нановолокнистые (УНВ) материалы различного строения и стандартный носитель Vulcan XC-72R. Результаты тестирования показали [4], что при плотности тока 100 мА/см2 и содержании платины от 0,02 до 0,09 мг/см2 катодный катализатор на основе УНВ, независимо от структуры носителя, имеет более низкие вольтамперные характеристики по

Таблица

Характеристики поверхности образцов АУМ

Предшественник образца

Удельная поверхность, м2/г

Удельный объем, см3/г

общая

микропор

всех пор

микропор

1

Нефтяной кокс

3331

3149

1,84

1,56

2

Фенол

2240

1871

1,53

0,98

3

8-Оксихинолин

2548

2235

1,59

1,21

4

Гидрохинон

2453

2342

1,36

1,22

5

о-Нитроанилин К+

1674

1618

0,87

0,79

6

о-Нитроацетонилид К+

1692

1661

0,85

0,80

7

о-Нитроанилин Na+

1921

1679

1,34

1,05

8

о-Нитроанилин Na+

2559

2167

1,74

1,25

9

о-Нитроанилин Na+

2508

2351

1,51

1,31

10

Гидрохинон К+

2697

2592

1,50

1,38

11

Гидрохинон К+

2835

2663

1,70

1,50

12

Гидрохинон К+

2765

2593

1,64

1,43

13

2,4-Динитроанилин

1148

1123

0,57

0,52

14

Барбитуровая кислота К+

1400

790

1,47

0,41

15

л-Хинондиоксим

2470

2166

1,64

1,27


л-гидрохинон (1:2)





16

л-Хинондиоксим

2620

1796

2,14

1,07


л-гидрохинон (1:2)





17

л-Хинондиоксим

2770

2271

1,92

1,29


л-гидрохинон (1:2)





18

Хиноловый эфир

2360

2265

1,25

1,10

сравнению с катализатором на основе традиционного Vulcan XC-72R при такой же концентрации платины (0,04—0,06 мг/см2). И наоборот, катализатор, где в качестве основы выступает АУМ-1 имеет более высокие показатели вольтамперной характеристики, в том числе и при низком содержании платины (0,02— 0,06 мг/см2) в образце.

Для изучения спектров ЭПР нами специально по методике [1] из ароматических соединений, представленных в таблице, были синтезированы три образца, отличающиеся только удельной поверхностью. Образец № 1 — с удельной поверхностью 1800 м2/г был получен в результате карбонизации в течение 30 мин при температуре 900 °С. Образец № 2 с удельной поверхностью 2200 м2/г получен в результате карбонизации в течение 15 мин при 700 °С. Образец № 3 — с удельной поверхностью 2900 м2/г, получен в результате карбонизации в течение 15 минут при 900 °С.

На рис. 1 показаны спектры ЭПР образцов, которые снимали на спектрометре Brucker 200 D при 77 и 273 К (Я, = 3 см) после предварительного вакуумиро-вания при 200 °С. Для образца № 1 каких-либо сигналов в спектре ЭПР не было обнаружено. Этот результат согласуется с давно известными фактами [5], что после карбонизации углеродного сырья или угля при температурах выше 700 °С спектры ЭПР локализованных электронов не наблюдаются, вероятно, из-за уширения спектров электронным газом образующихся графитовых структур.


Случайные файлы

Файл
170220.rtf
99875.rtf
47056.rtf
162720.rtf
99665.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.