Деление и онтогенез клетки (11883)

Посмотреть архив целиком














РЕФЕРАТ

по дисциплине: Ботаника

ТЕМА: ”Деление и онтогенез клетки”













2009



План


  1. Строение ядра.

  2. Деление клетки.

2.1 Митоз

2.2 Мейоз

3. Онтогенез растительной клетки.

Список литературы



  1. Строение ядра


Ядро – обязательная и существенная часть живой клетки всех эукариотических организмов. Ядро растительной клетки открыл Роберт Броун. Классические труды по выяснению роли ядра в жизни клетки принадлежат русскому ботанику Герасимову (1890-1905). Ядро контролирует жизнедеятельность клетки, сохраняет генетическую информацию и передает ее дочерним клеткам в процессе клеточного деления. Клетки с удаленным ядром быстро гибнут. Единственным типом клеток, которые остаются живыми и во взрослом состоянии не имеют ядра, являются ситовидные трубки, но живут они недолго: обычно один вегетационный период.

Живая клетка содержит одно ядро. Однако существуют многоядерные клетки некоторых водорослей и низших грибов. Двухъядерные бывают клетки выстилающего слоя пыльников.

В световой микроскоп ядро плохо видно, потому что преломляет свет не намного больше, чем окружающая цитоплазма. Поэтому без специальной окраски ядро тяжело обнаружить.

Ядро – крупный клеточный органоид. Размеры ядра зависят от вида растения, типа, возраста и состояния клетки. В вегетативных клетках высших растений размеры ядра от 5 до 25 мк. У однодольных ядра крупнее, чем у двудольных. У голосеменных крупнее, чем у покрытосеменных. Самые крупные ядра (до 500 мк) в половых клетках голосеменных.

Форма ядра чаще шаровидная, в прозенхимных клетках – вытянутая. В молодых клетках занимает центральное положение, затем смещается к оболочке, оттесняемое вакуолью.

Ядро эукариотической клетки окружено двумя мембранами, которые образуют покровы ядра (рис. 1). Между ними находится перинуклеарное пространство. Внутренняя мембрана агранулярного типа. Наружная мембрана гранулярная: к ней прикрепляются рибосомы. В некоторых местах эта мембрана объединяется с ЭПР. Покровы ядра можно рассматривать как специализированную, локально дифференцированную часть ЭПР.


Рис. 1. Строение ядра:

3

2

1

4

5

1- ядрышко; 2- нуклеоплазма; 3- хроматин; 4- мембраны ядра; 5- ядерные поры.


Покровы ядра имеют поры, которые размещены у некоторых растений в правильном порядке. Мембраны смыкаются вокруг каждой поры и образуют края поры. Ядерная пора не является простым отверстием, а имеет сложную структуру. Кольцо состоит из глобулярных телец, связанных фибриллами. Это кольцо окружает пору. Имеется центральная гранула и система фибрилл между гранулой и кольцом. Через ядерные поры осуществляется обмен веществ между ядром и цитоплазмой, например, выход в цитоплазму матричной РНК и рибосомных субчастиц или поступление в ядро рибосомных белков, нуклеотидов и молекул, которые регулируют активность ДНК.

Содержимое ядра представляет собой гелеобразный матрикс, называемый нуклеоплазмой. В состав ее входят разные химические вещества (белки, нуклеотиды) в виде истинного коллоидного раствора. В нуклеоплазме находятся хроматин и ядрышки. Хроматин состоит из отрицательно заряженной ДНК и положительно заряженных специальных белков – гистонов и липидов. Гистоны и ДНК объединены в структуры, которые по виду напоминают бусы. Их называют нуклеосомами. В составе нуклеосом ДНК плотно упакована и защищена от воздействия ферментов. Между нуклеосомами расположены нити ДНК с прикрепленными к ним негистоновыми белками.

В интерфазе хроматин переходит в более диспергированное состояние. Часть его остается плотно спирализованной и по-прежнему хорошо окрашивается. Эта часть называется гетерохроматином. Гетерохроматин имеет вид темных пятен, расположенных обычно ближе к покровам ядра. Остальной, более рыхло спирализованный хроматин, локализуется ближе к центру ядра. Это эухроматин.

Во время деления ядра хроматин конденсируется и образует более туго спирализованные нити или палочковидные тельца – хромосомы, названные так Вальдейером в 1888 году. Количество их для клеток каждого вида постоянно. В любой клетке гороха, например, находятся 14 хромосом – по семь от каждого родителя. В подсолнечнике – 34. Это приведены хромосомные числа в соматических клетках – диплоидный набор 2n. Половые клетки, или гаметы, содержат только половину количества хромосом, характерную для соматических клеток организма. Количество хромосом в гаметах называют гаплоидным набором хромосом. Гаплоидные половые клетки находятся в зрелых пыльцевых зернах и в зародышевом мешке семязачатка.

Клетки, имеющие более двух наборов хромосом, – полиплоидные. Приставки три-, тетра- и так далее показывают, во сколько раз увеличено количество хромосом, то есть: степень плоидности: 3n – триплоид, 4n – тетраплоид, 5n –пентаплоид и так далее. У растений полиплоидия встречается гораздо чаще, чем у животных. Большинство растений способно к вегетативному размножению и поэтому эффективно воспроизводятся в полиплоидном состоянии. Растения-полиплоиды чаще характеризуются крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам окружающей среды и другими хозяйственно полезными качествами. Они представляют собой важный источник изменчивости и могут быть использованы как исходный материал для селекции и создания высокоурожайных сортов растений. Среди наиболее важных сельскохозяйственных культур полиплоиды – пшеница, хлопчатник, сахарный тростник, банан, картофель, подсолнечник. Красивые садовые цветы (хризантемы, георгины) – также полиплоидные.

Искусственно полиплоидные растения получают при помощи колхицина – алкалоид, который угнетает образование митотического веретена в результате нарушения образований микротрубочек. Встречаются полиплоиды и в природных популяциях.

Одна из первых попыток построения схемы строения хромосом принадлежит Кольцову (1934).

Хромосома состоит из двух хроматид, основой которых является молекула ДНК. Неконденсированный участок ДНК формирует первичную перетяжку, скрепляющую хроматиды – центромеру. На ней расположены дисковидные тельца, на которых фиксируются нити веретена деления. У некоторых хромосом есть вторичная перетяжка, которая не имеет белковых телец. Она отделяет от остальной части хромосомы спутник. Вокруг вторичной перетяжки в ядре формируется ядрышко.

Ядрышко – сферическая структура внутри ядра. Шлейден в 1842 г. впервые указал на существование ядрышек. Граница между ядрышком и нуклеоплазмой не выражена, потому что ядрышко не окружено мембраной и находится в непосредственном контакте с другими компонентами ядра. Ядрышко имеет плотную структуру, состоящую из элементов двух типов – гранулярных и фибриллярных.

Некоторые из гранул содержат РНК, их можно сравнить по размерам с цитоплазматическими рибосомами. Мелкие гранулы представляют собой белок. Фибриллярный компонент содержит ДНК.

В центральной части ядрышка начинается скручивание рибосомной РНК и идет сборка рибосом, которая завершается в цитоплазме. Таким образом, в ядрышках синтезируются рибосомальные РНК. Деление и образование новых эукариотических клеток связано с делением ядра. Новые ядра всегда возникают в результате деления уже имеющихся.




  1. Деление клетки


2.1 Митоз


Процесс деления у эукариот можно разделить на две стадии: митоз и цитокинез.

Митоз (от греч. «митос» – нить) – это образование из одного ядра двух дочерних ядер, морфологически и генетически эквивалентных друг другу. Цитокинез включает деление цитоплазматической части клетки с образованием дочерних клеток.

Биологическая роль митоза состоит в одинаковом распределении редуплицированных хромосом между дочерними клетками, что обеспечивает образование генетически равнозначных клеток.

Интерфазу, период между двумя последовательными митотическими делениями, можно разделить в свою очередь на три периода. Первый начинается после митоза. В это время увеличивается количество цитоплазмы, включающей разные органеллы; синтезируются вещества, стимулирующие или ингибирующие остальную часть цикла. Во второй период происходит удвоение генетического материала (ДНК). В третий период формируются структуры, непосредственно принимающие участие в митозе, например, компоненты нитей веретена.

В процессе митоза выделяют несколько стадий: профазу, метафазу, анафазу и телофазу (рис. 2). В профазе хромосомы укорачиваются и утолщаются и распределяются более упорядоченно. В конце профазы покровы ядра и ядрышко исчезают.

В метафазе хромосомы окончательно обособляются и собираются в экваториальной плоскости посредине между полюсами бывшего ядра. Хроматиды начинают отделяться друг от друга, но остаются связанными в области центромеры. В это время микротрубочки образуют ряд нитей, расположенных между полюсами ядра – митотическое веретено.

Тип деления

Профаза

Метафаза

Анафаза

Телофаза

Интерфаза


МИТОЗ

2n4c

2n4c

2n2c

2n2c

2n4c



МЕЙОЗ

I деление


2n4c

2n4c

n2c

n2c

II деление

n2c

n2c

nc

nc

n2c

n2c

nc

nc


Случайные файлы

Файл
161925.rtf
126124.rtf
26961-1.rtf
73596.rtf
76534.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.