Генетическая регуляция развития (11449)

Посмотреть архив целиком















Реферат

На тему: «Генетическая регуляция развития»




Мутации и изменения, происходящие в онтогенезе


Если морфология представляет собой проявление сложного комплекса процессов развития, то эти процессы в свою очередь представляют собой проявление действия целого созвездия генов. Таково важное допущение, положенное в основу этой книги, и мы собрали по крайней мере prima facie данные в пользу того, что у Metazoa часть генома специфически участвует в регуляции онтогенеза и что характер эволюции этой части отличается от характера эволюции структурных генов. До сих пор, однако, мы ограничивались изолированными частными примерами генного контроля морфогенеза и не пытались ответить на центральный вопрос: каким образом гены определяют процесс развития? Здесь мы в весьма прямом смысле возвращаемся к программе механики развития, выдвинутой Ру (Roux), однако, вместо того чтобы удалять клетки или другие структуры зародыша, с тем чтобы определить их роли в развитии, как это делали представители классической экспериментальной эмбриологии, генетика развития использует мутации как очень тонкий скальпель, дающий возможность уничтожать или изменять отдельные гены.

Генетическая модель, с помощью которой можно изучать любую систему, теоретически находящуюся под генетическим контролем, состоит в следующем. Для того чтобы проанализировать какой-либо процесс, в данном случае онтогенез, исследователь выявляет мутации, изменяющие этот процесс. Выявив такие мутации, он проводит фенотипическое сравнение мутантных особей с нормальными. Это сравнение помогает ему понять, как данный ген влияет на нормальное развитие. Однако, прежде чем продолжить описание метода проведения такого сравнения, следует указать, что воздействие мутаций на онтогенез проявляется двумя основными способами. Это, во-первых, дизруптивные изменения, при которых процесс нормального развития нарушается, что приводит к морфологическим аномалиям (например, к отсутствию некоторых структур). В наиболее резко выраженной форме такие мутации оказываются летальными. Во-вторых, это гомеозисные изменения, при которых под действием мутации развитие отклоняется от нормы, в результате чего какая-либо структура данного организма замещается гомологичным органом или конечностью. Мы отложим дальнейшее обсуждение мутаций этого второго типа до следующей главы и займемся здесь главным образом дизруптивными изменениями.

Анализ нарушений, вызываемых какой-либо дизруптивной мутацией, лишь в редких случаях сводится к простому сравнению конечного фенотипа гибнущей особи с нормальным фенотипом, потому что развитие – это сложный и высокоинтегрированный процесс. Огромное большинство происходящих в нем событий тесно связано с другими событиями и, в сущности, зависит от них. Это особенно ясно проявляется в том, что многие мутации обладают плейотропным действием, т.е. отсутствие или изменение одного гена может обусловить несколько морфологических изменений. Примером служат изменения, наблюдаемые у людей с так называемой аномалией Пельгера (Pg). Она наследуется у человека как простой доминантный аутосомный признак. У гетерозигот (Pg/+) нет никаких клинических симптомов, но для их нейтрофилов характерны аномально сегментированные ядра. У взрослого человека ядра полиморфноядерных нейтрофилов обычно состоят из четырех или пяти сегментов, у гетерозигот же Pg/+ ядра состоят всего из двух, реже из трех сегментов. Этот же признак обнаружен у кроликов, у которых он наследуется по тому же типу и сходным образом проявляется в картине крови. Скрещивая гетерозиготных кроликов, можно получить гомозиготных особей Pg/Pg. Ядра нейтрофилов у этих особей вообще не разделены на сегменты, и такой генотип сопровождается низкой жизнеспособностью. Для немногих выживших особей помимо этой особенности нейтрофилов характерна крайне выраженная карликовость с недоразвитием конечностей и грудной клетки. Здесь следует задать вопрос: какова причинная зависимость, если она существует, между этими двумя плейотропными нарушениями? Не исключена возможность, что оба этих фенотипических проявления представляют собой на самом деле результат третьего, пока еще неизвестного нарушения, вызванного аллелем Pg.


Анализ времени и места действия генов


Методы, используемые для определения первичного места действия гена, сходны с применяемыми в классической эмбриологии и, в сущности, заимствованы из нее. В своей простейшей форме эти методы состоят в пересадке органа или кусочка ткани от мутантной особи нормальному реципиенту. Производят также и реципрокные пересадки. Эта операция обычно проделывается до проявления того или иного мутантного эффекта. Затем можно определить судьбу развивающегося органа или ткани в их новом окружении. Если генетический дефект рассматриваемого органа или ткани автономен для этой структуры, т.е. если она является первичным местом действия данного гена, то следует ожидать, что мутантная ткань будет продуцировать аномальный фенотип (даже и у нормального хозяина). Эксперименты сходного типа можно проводить на тканях или органах, выращиваемых в культуре, примерно таким же образом, экспериментах по совместному выращиванию дермы и эпидермиса мыши, ящерицы и курицы, только вместо соединения тканей от животных разных видов соединяют ткани или органы мутантных и немутантных особей. Создание мозаичных особей проводилось в еще более широких масштабах Минц (Mintz) и ее сотрудниками. Этим исследователям удалось сращивать in vitro целых мышиных зародышей на стадии морулы. Таких «гибридных» зародышей имплантируют затем псевдобеременной самке. Получающиеся в результате мыши, происходящие от четырех родительских особей, состоят из смеси клеток двух разных генотипов, причем активны оба генотипа. Этот метод можно также использовать для анализа автономности экспрессии мутантных генов, сращивая мутантных и нормальных зародышей на стадии морулы.

Следует упомянуть еще об одном методе такого типа – о парабиозе. Он состоит в сращивании целых животных, а не просто органов или тканей. Необходимо указать, однако, что при таком сращивании не получается действительно интегрированных мозаичных особей. При всех этих методах необходимо, чтобы трансплантируемые ткани, органы или сращиваемые зародыши были совместимы. У низших позвоночных, таких как амфибии, это не представляет серьезной проблемы; однако у млекопитающих дополнительное осложнение возникает в связи с возможностью отторжения трансплантата, так что следует сначала убедиться в том, что мутантная и нормальная особи иммунологически совместимы. Остается привести еще два метода, специфичные для генетики развития и применяемые почти исключительно при работе с Drosophila melanogaster. Это создание гинандроморфов и индукция мозаичных особей путем митотической рекомбинации. Гинандроморфами называют взрослых мух, тело которых состоит как из мужских, так и из женских тканей. Используя тип дробления, характерный для двукрылых, и их особую кольцевую Х-хромосому, таких мозаичных особей можно постоянно получать в лабораторных линиях. В норме X-хромосома дрозофилы имеет форму палочки, на одном конце которой находится центромера. Одна из мутантных форм этой хромосомы представляет собой замкнутое кольцо. Кольцо это обладает интересной особенностью: при нескольких первых делениях дробления оно нестабильно. Эта нестабильность может привести, в частности, к утрате кольцевой хромосомы одним из двух дочерних ядер, образующихся при первом делении дробления. Если утрата происходит на этой стадии, то в результате дальнейших делений дробления создается популяция ядер, одна половина которых содержит кольцевую Х-хромосому, а другая не содержит ее. Если зигота, начиная делиться, представляет собой гетерозиготную самку – палочка-Х/кольцо-Х, то после такой утраты половина ее ядер окажется женскими и будет содержать две Х-хромосомы – кольцо-Х/палочка-Х, а другая половина – мужскими и будет содержать только одну Х-хромосому – палочка-Х/О (пол у дрозофилы определяется соотношением Х-хромосом и аутосом, а не Y-хромосомой, как у млекопитающих). После восьми синцитиальных делений в яйце образуется скопление ядер. Это скопление, однако, не представляет собой случайной смеси типов ХО и XX. Ядра этих двух типов образуют две пространственно разделенные группы, расположение которых определяется плоскостью первого деления дробления. Поэтому, когда такая популяция ядер мигрирует к периферической цитоплазме, с тем чтобы образовать клеточную бластодерму, она мигрирует в виде двух соприкасающихся, но обособленных групп мужских и женских ядер. Взрослая муха, развивающаяся из такого гинандро-морфного зародыша, также будет мозаичной. Как показано на рис. 7–3, количество и расположение взрослой ткани мужской или женской природы непостоянно. Это происходит потому, что плоскость первого деления дробления располагается случайным образом по отношению к осям яйца. Поэтому если плоскость первого дробления делит яйцо по длинной оси на правую и левую половины, то из него разовьется билатеральный гинандроморф. Вариации этого простого случая приведут к большей или меньшей доле мужской ткани в зависимости от того, сколько ядер ХО находится в тех участках бластодермы, которым суждено сформировать взрослые ткани.


Мутации с материнским эффектом


У таких разных организмов, как морские ежи и лягушки, события, происходящие на ранних стадиях дробления, и, в сущности, большая часть, если не все развитие, предшествующее гаструляции, не зависят от генома зиготы. Информацию, необходимую для выполнения этих начальных и решающих этапов онтогенеза, определяет материнский геном при образовании яйцеклетки. На примере закручивания раковины у Limnaea, такое заключение подтверждается существованием у широкого круга различных организмов так называемых генов с материнским эффектом. Мутации этих генов передаются по наследству чрезвычайно своеобразным способом. При скрещивании двух особей, гетерозиготных по какому-либо рецессивному признаку, следует ожидать, что этот признак проявится у 25% потомков. Однако в случае материнских (mat) мутаций особи mat/mat развиваются нормально. Более того, мужские особи с таким генотипом фертильны и при скрещивании с нормальными женскими особями дают нормальных потомков. В отличие от этого гомозиготные самки дают аномальных потомков. Это объясняется тем, что у таких самок образуются аномальные яйцеклетки, которые не могут завершить нормальное развитие. Самка mat/mat выживает, потому что она происходит от гетерозиготной (mat/+) матери, способной продуцировать нормальные яйца. Хотелось бы сделать вывод, что гены, дающие такие мутации, продуцируют какие-то «морфогены», которые образуются в развивающемся ооците в качестве «инструкции» для раннего развития. Однако возможно также, что яйцо неспособно развиваться просто вследствие какого-то общего нарушения метаболизма. Подходящим примером служит группа из пяти различных дефектов, наследуемых по материнскому типу и определяемых генами, локализованными в Х-хромосоме Drosophila melanogaster: tin (cinnamon), dor (deep orange), amx (almondex), fu (fused) и r (rudimentary). Все эти признаки, помимо того что они наследуются по материнскому типу, вызывают у взрослых особей заметные морфологические отклонения, по которым они и получили свои красочные названия. Гемизиготные самцы, обладающие любой одной из этих мутаций, жизнеспособны и фертильны, так же как и гетерозиготные самки. Скрещивая мутантных самцов с гетерозиготными самками, можно получить гомозиготных самок, которые при скрещивании с мутантными самцами оказываются совершенно стерильными. Например, самки dor/dor продуцируют яйца, развитие которых прекращается на стадии гаструляции. Остальные четыре мутации также вызывают гибель зародышей, но на несколько другой стадии, чем мутации dor. В характере наследования всех этих пяти мутаций есть еще одна аномальная особенность. Скрещивая гомозиготных мутантных самок с нормальными самцами, можно получить некоторое число потомков. Все это – гетерозиготные самки, развившиеся из яиц, оплодотворенных сперматозоидом, несущим Х-хромосому. Ни один самец не выживает. По-видимому, присутствие аллеля дикого типа рассматриваемого гена может несколько снизить дефектность яйца, даже если этот аллель вносится сперматозоидом. Это, конечно, подразумевает, что по крайней мере часть генома зиготы активна во время гаструляции.


Случайные файлы

Файл
28317.rtf
5195-1.rtf
2732.rtf
39180.rtf
70883.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.