Возникновение земной жизни (11416)

Посмотреть архив целиком

Зарождение жизни


Земля сформировалась, вероятно, 4,5–5 млрд. лет назад из гигантского облака космической пыли. частицы которой спрессовались в раскаленный шар. Из него в атмосферу выделялся водяной пар, а из атмосферы на медленно остывавшую Землю в течение миллионов лет в виде дождей выпадала вода. В углублениях земной поверхности образовался доисторический Океан. В нем примерно 3,8 млрд. лег назад зародилась первоначальная жизнь.

Есть несколько теорий о происхождении жизни на Земле. Например, одна из давних гипотез гласит, что она занесена на Землю из космоса, но неоспоримых доказательств этого нет. Кроме того, та жизнь, которую мы знаем, удивительно приспособлена для существования именно в земных условиях, поэтому если она и возникла вне Земли, то на планете земного типа. Большинство же современных ученых полагают, что жизнь зародилась на Земле, в ее морях. Но как произошла сама планета и как на ней появились моря?

По этому поводу существует одна широко признанная теория. В соответствии с ней Земля образовалась из облаков космической пыли, содержащей все известные в природе химические элементы, которые спрессовались в шар. Горячий водяной пар вырывался с поверхности этого раскаленного докрасна шара, окутывая его сплошным облачным покровом, Водяной пар в облаках медленно охлаждался и превращался в воду, которая выпадала в виде обильных непрерывных дождей на еще раскаленную, пылающую Землю. На ее поверхности она снова превращалась в водяной пар и возвращалась в атмосферу. За миллионы лет Земля постепенно потеряла так много тепла, что ее жидкая поверхность, остывая, начала твердеть. Так образовалась земная кора.

Прошли миллионы лет, и температура поверхности Земли еще больше понизилась. Ливневые воды перестали испаряться и стали стекать в огромные лужи. Так началось воздействие воды на земную поверхность. А потом из-за понижения температуры произошел настоящий потоп. Вода, которая до этого испарялась в атмосферу и превратилась в ее составную часть, беспрерывно низвергалась на Землю, С громом и молниями обрушивались из облаков мощные ливни. Мало-помалу в самых глубоких впадинах земной поверхности скапливалась вода, которая уже не успевала совсем испариться. Ее было так много, что постепенно на планете образовался доисторический Океан. Молнии рассекали небо. Но никто этого не видел. На Земле еще не было жизни. Непрерывный ливень начал размывать горы. Вода стекала с них шумными ручьями и бурными реками. За миллионы лет водные потоки глубоко разъели земную поверхность и кое-где появились долины. В атмосфере уменьшалось содержание воды, а на поверхности планеты ее скапливалось все больше. Сплошной облачный покров становился тоньше, пока в один прекрасный день Земли не коснулся первый луч солнца. Непрерывный дождь кончился. Большую часть суши покрыл доисторический Океан. Из ее верхних слоев вода вымывала огромное количество растворимых минералов и солей, которые попадали в море. Вода из него непрерывно испарялась, образуя облака, а соли оседали, и с течением времени происходило постепенное засоление морской воды. По-видимому, при каких-то существовавших в древности условиях образовались вещества, из которых возникли особые кристаллические формы. Они росли, как и все кристаллы, и давали начало новым кристаллам, которые присоединяли к себе все новые вещества. Солнечный свет и, возможно, очень сильные электрические разряды служили в этом процессе источником энергии. Может быть, из таких элементов зародились первые обитатели Земли – прокариоты, организмы без оформленного ядра, похожие на современных бактерий. Они были анаэробами, то есть не использовали для дыхания свободный кислород, которого тогда еще не было в атмосфере. Источником пищи для них служили органические соединения, возникшие на еще безжизненной Земле в результате воздействия ультрафиолетового излучения Солнца, грозовых разрядов и тепла, образующегося при извержении вулканов. Жизнь существовала тогда в тонкой бактериальной пленке на дне водоемов и во влажных местах. Эту эру развития жизни называют архейской. Из бактерий, а возможно, и совершенно независимым путем, возникли и крошечные одноклеточные организмы – древнейшие простейшие животные.

Они и сейчас составляют основу жизни в морях и пресноводных водоемах. Они так малы, что их можно увидеть лишь с помощью микроскопа. В капле воды из небольшого пруда их тысячи и тысячи. С этих простейших одноклеточных началось развитие всей животной жизни. В конце протерозоя, следующей эры после архея, 1000 – 600 млн. лет назад, уже существовала довольно богатая фауна: медузы, полипы, плоские черви, моллюски и иглокожие.

От более простых по строению животных и растений, населявших море в конце протерозоя, не сохранилось следов. Можно только предполагать, что это были организмы, состоявшие только из мягких тканей, которые после смерти быстро полностью разлагались. Настоящих рыб в кембрии еще не было, но уже жили кишечнополостные, губки, ныне вымершие археоциаты, плоские и многощетинковые черви, улитки, каракатицы, раки и трилобиты. Последние походили на раков длиной до 10 см. Для того времени это были настоящие гиганты, крупнее всех других существ. (На суше в то время жизни еще не было.) В конце кембрия, очевидно, уже появились первые хордовые, похожие на современных ланцетников. В течение последующих миллионов лет животные постепенно изменялись, и в следующем геологическом периоде – силуре, начавшемся 500 – 400 млн. лет назад, кроме многочисленных трилобитов на морском дне появились новые обитатели – морские скорпионы.

В толще вод силурийского моря пассивно дрейфовали одноклеточные организмы и медузы. А по морскому дну ползали ракообразные и трилобиты, черви и животные, защищенные раковинами, например двустворчатые моллюски и улитки. Плавать могли лишь очень немногие из них. Даже первые позвоночные, внешне уже напоминавшие рыб, обитали на морском дне. В силуре в морях и пресных водах появились и странные «рыбы» – без челюстей и парных плавников. До наших дней дожили их родственники – миксины и миноги. В силурийский период уже появились первые настоящие рыбы. У этих похожих на акул пловцов было обтекаемое, покрытое панцирем тело, плавники, рот с подвижной челюстью, напоминавшей клюв и усаженной острыми зубами. Примерно 450 млн. лет назад, в силуре, появились первые позвоночные животные – рыбы. Тело одной из древнейших – цефаласписа – было покрыто панцирной чешуей, а голова – костным панцирем. По-видимому, цефаласпис был плохим пловцом. За миллионы лет в том же геологическом периоде развились два больших класса рыб – хрящевые и костные (двоякодышащие, кистеперые и лучеперые). И хрящевым, то есть имеющим хрящевой скелет, относятся акулы и скаты. В отличие от них, скелет костных рыб частично или целиком состоит из костной ткани. К костным относятся почти все хорошо знакомые нам промысловые рыбы: сельдь, камбала, треска и скумбрия, карп, щука и многие другие. Всего на Земле в наши дни насчитывается 20 тысяч видов рыб, и населяют они не только моря, но и другие водоемы.

400 млн. лет назад силур сменился девонским геологическим периодом, который длился около 60 млн. лет. Тогда на суше появились первые растения – лишайники, которыми зарастали увлажненные берега водоемов. В течение девона от них произошли другие формы, в том числе и первые высшие растения – папоротники и хвощи. Кроме того, если прежде все животные дышали лишь кислородом, растворенным в воде, то теперь некоторые из них научились извлекать его из воздуха. Эти первые сухопутные животные – тысяченожки, скорпионы и бескрылые примитивные насекомые, вероятно, обитали поблизости от воды. Предком всех сухопутных позвоночных животных была кистеперая рыба с похожими на лапы грудными и брюшными плавниками. Постепенно у кистеперых рыб развились настоящие верхние и нижние конечности, и с течением времени появились земноводные (амфибии) и пресмыкающиеся (рептилии).

Вероятность возникновения жизни

Теория абиогенеза предполагает, что жизнь зародилась на определенном этапе развития материи. С момента образования Вселенной и первых частиц материя встает на путь постоянных изменений. Сначала возникли атомы и молекулы, потом появились звезды и пыль, из нее – планеты, а на планетах зародилась жизнь. Живое возникает из неживого, повинуясь некоему высшему закону, сущность которого нам пока неизвестна. Жизнь не могла не возникнуть на 3 емле, где были подходящие условия. Разумеется, опровергнуть сие метафизическое обобщение невозможно, но семена сомнения проросли. Дело в том, что условия, необходимые для синтеза жизни, весьма многочисленны, часто противоречат фактам и друг другу. К примеру, нет доказательств того, что на ранней Земле была восстановительная атмосфера. Неясно, как возник генетический код. Удивляет своей сложностью строение живой клетки и ее функции. Какова вообще вероятность зарождения жизни? Вот несколько примеров.

Белки состоят только из так называемых «левых» аминокислот, то есть асимметричных молекул, которые вращают поляризацию проходящего через них света влево. Почему при строительстве белка используются только левые аминокислоты, неизвестно. Может быть, это произошло случайно и где-то во Вселенной есть живые существа, состоящие из правых аминокислот. Скорее всего, в первичном бульоне, где происходил синтез исходных белков, было поровну левых и правых аминокислот. И только появление реально живой «левой» структуры нарушило эту симметрию и биогенный синтез аминокислот пошел по «левому» пути.

Впечатляет расчет, который Фред Хойл приводит в своей книге «Evolution from Space». Вероятность получения случайным образом 2 000 ферментов клетки, состоящих из 200 аминокислот каждый, равна 10–4000 – абсурдно малая величина, даже если бы весь космос был органическим супом.

Вероятность синтеза одного белка, состоящего из 300 аминокислот, – один шанс на 2х10390. Опять ничтожно мало. Уменьшим число аминокислот в белке до 20, тогда число возможных комбинаций синтеза такого белка составит 1 018 – всего на порядок больше числа секунд в 4,5 миллиарда лет. Нетрудно видеть, что времени на перебор всех вариантов и выбор наилучшего у эволюции просто не было. Если учесть, что аминокислоты в белках соединены в определенные последовательности, а не случайным образом, то вероятность синтеза молекулы белка будет такой же, как если бы мартышка случайно напечатала одну из трагедий Шекспира, то есть почти нулевой.

Ученые рассчитали, что молекула ДНК, участвующая в простейшем цикле кодирования белков, должна была состоять из 600 нуклеотидов в определенной последовательности. Вероятность случайного синтеза такой ДНК равна 10–400, Иначе говоря, для этого потребуется 400 Попыток.

Не все ученые согласны с такими подсчетами вероятности. Они указывают, что рассчитывать шансы синтеза белка случайным перебором комбинаций некорректно, так как у молекул есть предпочтения, и одни химические связи всегда более вероятны, чем другие. По мнению австралийского биохимика Яна Мусгрейва, рассчитывать вероятность абиогенеза вообще бессмысленно. Во-первых, образование полимеров из мономеров не случайно, а подчиняется законам физики и химии. Вовторых, рассчитывать образование современных молекул белка, ДНК или РНК неправильно потому, что они не входили в состав первых живых систем. Возможно, в структуре существующих ныне организмов ничего не осталось от прошлых времен. Как сейчас считают, первыми организмами были очень простые системы коротких молекул, состоящих всего из 30–40 мономеров. Жизнь начиналась с очень простых организмов, постепенно усложняя конструкцию. Природа даже не пыталась сразу построить «Боинг-747». В-третьих, не надо бояться малой вероятности. Один шанс на миллион миллионов? И что с того, ведь он может выпасть с первой же попытки.

Решающий эксперимент

Нет никакой надежды, что однажды клетка получилась сама собой из атомов химических элементов. Это невероятный вариант. Простая клетка бактерии содержит сотни генов, тысячи белков и разных молекул. Фред Хойл шутил, что синтез клетки так же невероятен, как сборка «Боинга» ураганом, пронесшимся над свалкой запчастей. И все же «Боинг» существует, значит, он был каким-то образом «собран», точнее «самособран». По нынешним представлениям, «самосборка» «Боинга» началась 4,5 миллиарда лет назад, процесс шел постепенно и был растянут во времени на миллиард лет. По крайней мере 3,5 миллиарда лет назад живая клетка уже существовала на 3 емле.

Для синтеза живого из неживого на начальном этапе в атмосфере и водоемах планеты должны присутствовать простые органические и неорганические соединения: С, С2, С3, СН, CN, СО, CS, HCN, СНЗСН, NH, 0, ОН, Н20, S. Стэнли Миллер в своих знаменитых опытах по абиогенному синтезу смешал водород, метан, аммиак и водяные пары, потом пропускал нагретую смесь через электрические разряды и охлаждал. Через неделю в колбе образовалась коричневая жидкость, содержащая семь аминокислот, и в том числе глицин, аланин и аспарагиновую кислоту, входящие в состав клеточных белков. Эксперимент Миллера показал, как могла образоваться предбиологическая органика – вещества, которые участвуют в синтезе более сложных компонентов клетки. С тех пор биологи считают этот вопрос решенным, несмотря на серьезную проблему. Дело в том, что абиогенный синтез аминокислот идет только в восстановительных условиях, вот почему Опарин полагал атмосферу ранней 3 емли метаново-аммиачной. Но геологи не согласны с таким выводом.

Проблема ранней атмосферы

Метану и аммиаку неоткуда взяться в большом количестве на Земле, считают специалисты. К тому же эти соединения очень неустойчивы и разрушаются под действием солнечного света, метаново-аммиачная атмосфера не могла бы существовать, даже если бы эти газы выделялись из недр планеты. По данным геологов, в атмосфере Земли 4,5 миллиарда лет назад преобладали углекислый газ и азот, что в химическом отношении создает нейтральную среду. Об этом свидетельствует состав древнейших горных пород, которые в тот период были выплавлены из мантии. Самые древние породы на планете возрастом 3,9 миллиарда лет обнаружили в Гренландии. Это так называемые серые гнейсы – сильно измененные магматические породы среднего состава. Изменение этих горных пород шло миллионы лет под влиянием углекислых флюидов мантии, которые одновременно насыщали и атмосферу. В таких условиях абиогенный синтез невозможен.

Проблему ранней атмосферы Земли пытается решить академик Э.М. Галимов, директор Института геохимии и аналитической химии им. В.И. Вернадского РАН. Он рассчитал, что земная кора возникла очень рано, в первые 50–100 миллионов лет после образования планеты, и была по преимуществу металлической. В таком случае мантия действительно должна была выделять метан и аммиак в достаточном количестве для создания восстановительных условий. Американские ученые К. Саган и К. Чайба предложили механизм самозащиты метановой атмосферы от разрушения. По их схеме разложение метана под действием ультрафиолета могло привести к созданию в верхних слоях атмосферы аэрозоля из частиц органики. Эти частицы поглощали солнечную радиацию и защищали восстановительную среду планеты. Правда, этот механизм разработали для Марса, но он применим и к ранней Земле.

Подходящие условия для образования предбиологической органики не сохранялись на Земле долго. В течение следующих 200–300 миллионов лет мантия начала окисляться, что привело к выделению из нее углекислого газа и смене состава атмосферы. Но к тому времени среда для зарождения жизни уже была подготовлена.

Революционная идея

Научные основы абиогенеза, или происхождение живого из неживого, заложил русский биохимик А.И. Опарин. В 1924 году, будучи 30-летним ученым, Опарин опубликовал статью «Происхождение жизни», которая, по мнению его коллег, «содержала семена интеллектуальной революции». Публикация книги Опарина на английском языке в 1938 году стала сенсацией и привлекла к проблеме жизни значительные интеллектуальные ресурсы Запада. В 1953 году С. Миллер, аспирант Университета Чикаго, провел успешный опыт по абиогенному синтезу. Он создал условия ранней Земли в лабораторной пробирке и в результате химической реакции получил набор аминокислот. Так, теория Опарина начала получать экспериментальные подтверждения.

По воспоминаниям коллег, академик А.И. Опарин был убежденным материалистом и атеистом. Тому подтверждение – его теория абиогенеза, которая, казалось бы, не оставляет надежды на сверхъестественное объяснение загадок жизни. Тем не менее взгляды и личность ученого привлекали к нему людей совершенно противоположных мировоззрений. Занимаясь научной и просветительской работой, участвуя в движении пацифистов, он много выезжал за рубеж. Однажды, где-то в 1950-х годах, Опарин читал лекции в Италии по проблеме происхождения жизни. После доклада ему сказали, что с ним хочет познакомиться не кто иной, как президент Папской академии наук из Ватикана. Александр Иванович, будучи советским человеком и прекрасно зная предвзятое отношение зарубежной интеллигенции к СССР, не ожидал от представителя католической церкви ничего хорошего, наверняка какая-нибудь провокация. Все же знакомство состоялось. Преподобный синьор пожал Опарину руку, поблагодарил за лекцию и воскликнул: «Профессор, я восхищен тем, как прекрасно Вы вскрыли промысел Божий!»

Что такое жизнь?

Поисками определения жизни занимаются не только философы. Такое определение необходимо биохимикам, чтобы понять: а что же получилось в пробирке – живое или неживое? Палеонтологам, изучающим древнейшие горные породы в поисках начала жизни. Экзобиологам, ищущим организмы внеземного происхождения. Дать определение жизни непросто. Говоря словами Большой Советской Энциклопедии, «строго научное разграничение на живые и неживые объекты встречает определенные трудности». Действительно, что характерно только для живого организма? Может быть, набор внешних признаков? Нечто белое, мягкое, двигается, издает звуки. В это примитивное определение не попадают растения, микробы и еще многие организмы, потому что они молчат и не двигаются. Можно рассмотреть жизнь с химической точки зрения как материю, состоящую из сложных органических соединений: аминокислот, белков, жиров. Но тогда и простую механическую смесь этих соединений следует считать живой, что неверно. Более удачное определение, по которому в целом существует научный консенсус, связано с уникальными функциями живых систем. Способность к размножению, когда потомкам передается точная копия наследственной информации, присуща всей земной жизни, причем даже самой малой ее частице – клетке. Вот почему клетку принимают за единицу измерения жизни. Слагаемые же клетки: белки, аминокислоты, ферменты – взятые по отдельности, живыми не будут. Отсюда следует важный вывод о том, что успешные опыты по синтезу этих ве ществ нельзя считать ответом на вопрос о происхождении жизни. В этой области произойдет революция, только когда станет ясно, как возникла целая клетка. Без сомнения, первооткрывателям тайны вручат Нобелевскую премию. Помимо функции размножения есть ряд необходимых, но недостаточных свойств системы для того, чтобы называться живой. Живой организм может приспосабливаться к изменению окружающей среды на генетическом уровне. Это очень важно для выживания. Благодаря изменчивости жизнь сохранилась на ранней Земле, во время катастроф и в суровые ледниковые периоды. Важное свойство живой системы – каталитическая активность, то есть умение проводить только определенные реакции. На этом свойстве основан обмен веществ – выбор из окружающей среды нужных веществ, их переработка и получение энергии, необходимой для дальнейшей жизнедеятельности. Схема обмена веществ, которая представляет собой не что иное, как алгоритм выживания, защита в генетическом коде клетки и через механизм наследственности передается потомкам. Химикам известно много систем с каталитической активностью, которые, однако, не умеют размножаться, и потому их нельзя считать живыми.

Самые древние микробы

В черных сланцах Западной Австралии возрастом 3,5 миллиарда лет сохранились остатки самых древних организмов, когда-либо обнаруженных на Земле. Видимые лишь под микроскопом шарики и волоконца принадлежат прокариотам – микробам, в клетке которых еще нет ядра и спираль ДНК уложена прямо в цитоплазме. Древнейшие окаменолости обнаружил в 1993 году американский палеобиолог Уильям Шопф. Вулканические и осадочные породы комплекса Пилбара, что к западу от Большой песчаной пустыни в Австралии – одни из самых старых пород на Земле. По счастливой случайности эти образования не столь сильно изменились под действием мощных геологических процессов и сохранили в прослоях остатки ранних существ.

Убедиться в том, что крохотные шарики и волоконца в прошлом были живыми организмами, оказалось трудно. Ряд мелких бусинок в горной породе может быть чем угодно: минералами, небиологической органикой, обманом зрения. Всего Шопф насчитал 11 видов окаменелостей, относящихся к прокариотам. Из них 6, по мнению ученого, – это цианобактерии, или синезеленые водоросли. Подобные виды до сих пор существуют на Земле в пресных водоемах и океанах, в горячих ключах и близ вулканов. Шопф насчитал шесть признаков, по которым подозрительные объекты в черных сланцах следует считать живыми.

Вот эти признаки:

1. Ископаемые сложены органической материей

2. У них сложное строение – волоконца состоят из клеток разной формы: цилиндров, коробочек, дисков

3. Объектов много – всего 200 ископаемых включают в себя 1 900 клеток

4. Объекты похожи друг на друга, как современные представители одной популяции

5. Это были организмы, хорошо приспособленные к условиям ранней Земли. Они обитали на дне моря, защищенные от ультрафиолета толстым слоем воды и слизи

6. Объекты размножались как современные бактерии, о чем говорят находки клеток в стадии деления.

Обнаружение столь древних цианобактерий означает, что почти 3,5 миллиарда лет назад существовали организмы, которые потребляли углекислый газ и производили кислород, умели скрываться от солнечной радиации и восстанавливаться после ранений, как это делают современные виды. Биосфера уже начала складываться. Для науки в этом кроется пикантный момент. Как признается Уильям Шопф, в столь почтенных породах он бы предпочел найти более примитивные создания. Ведь находка древнейших цианобактерий отодвигает начало жизни на период, стертый из геологической истории навсегда, вряд ли геологи когда-либо смогут его обнаружить и прочесть. Чем старше породы, тем дольше они пребывали под давлением, температурой, выветривались. Помимо 3 ападной Австралии на планете сохранилось только одно место с очень древними породами, где могут встретиться окаменелости – на востоке Южной Африки в королевстве Свазиленд. Но африканские породы за миллиарды лет претерпели сильнейшие изменения, и следы древних организмов потерялись.

В настоящее время геологи не нашли начала жизни в горных породах Земли. Строго говоря, они вообще не могут назвать интервал времени, когда живых организмов еще не было. Не могут они и проследить ранние – до 3,5 миллиарда лет назад – этапы эволюции живого. Во многом из-за отсутствия геологических свидетельств тайна происхождения жизни остается нераскрытой.

В теории абиогенеза поиски первоначала жизни приводят к идее о более простой, нежели клетка, системе. Современная клетка необычайно сложна, ее работа держится на трех китах: ДНК, РНК и белки.

ДНК хранит наследственную информацию, белки осуществляют химические реакции по схеме, заложенной в ДНК, информацию от ДНК к белкам передает РНК. Что может входить в упрощенную систему? Какая-то одна из составных частей клетки, которая умеет, как минимум, воспроизводить себя и регулировать обмен веществ.

Поиски наиболее древней молекулы, с которой, собственно, и началась жизнь, продолжаются почти столетие. Подобно геологам, восстанавливающим историю Земли по пластам горных пород, биологи открывают эволюцию жизни по строению клетки. Череда открытий ХХ века привела к гипотезе спонтанно зародившегося гена, который стал прародителем жизни. Естественно думать, что таким первогеном могла быть молекула ДНК, ведь она хранит информацию о своей структуре и об изменениях в ней. Постепенно выяснили, что ДНК не может сама передать информацию другим поколениям, для этого ей нужны помощники – РНК и белки. Когда во второй половине ХХ века открыли новые свойства РНК, то оказалось, что эта молекула больше подходит на главную роль в пьесе о происхождении жизни.

Молекула РНК проще по своему строению, чем ДНК. Она короче и состоит из одной нити. Эта молекула может служить катализатором, то есть проводить избирательные химические реакции, например соединять между собой аминокислоты, и в частности осуществлять собственную репликацию, то есть воспроизведение. Как известно, избирательная каталитическая активность – одно из основных свойств, присущих живым системам. В современных клетках эту функцию выполняют только белки. Возможно, эта способность перешла к ним со временем, а когда-то этим занималась РНК.

Чтобы выяснить, на что еще способна РНК, ученые стали разводить ее искусственно. В насыщенном молекулами РНК растворе кипит собственная жизнь. Обитатели обмениваются частями и воспроизводят сами себя, то есть идет передача информации потомкам. Спонтанный отбор молекул в такой колонии напоминает естественный отбор, а значит, им можно управлять. Как селекционеры выращивают новые породы животных, так же стали выращивать РНК с заданными свойствами. Например, молекулы, которые помогают сшивать нуклеотиды в длинные цепочки; молекулы, устойчивые к высокой температуре, и так далее.

Колонии молекул в чашках Петри – это и есть мир РНК, только искусственный. Натуральный мир РНК мог возникнуть 4 миллиарда лет назад в теплых лужах и мелких озерцах, где шло спонтанное размножение молекул. Постепенно молекулы стали собираться в сообщества и соревноваться между собой за место под солнцем, выживали наиболее приспособленные. Правда, передача информации в таких колониях происходит неточно, и вновь приобретенные признаки отдельной «особи» могут теряться, но этот недостаток покрывается большим количеством комбинаций. Отбор РНК шел очень быстро, и за полмиллиарда лет могла возникнуть клетка. Дав толчок возникновению

изни, мир РНК не исчез, он продолжает существовать внутри всех организмов на Земле.

Мир РНК – почти живой, до полного оживления ему остается всего один шаг – произвести клетку. Клетка отделена от окружающей среды прочной мембраной, значит, следующий этап эволюции мира РНК-заключение колоний, где молекулы связаны между собой родством, в жировую оболочку. Такая протоклетка могла получиться случайно, но, чтобы стать полноценной живой клеткой, мембрана должна была воспроизводиться от поколения к поколению. С помощью искусственного отбора в колонии можно вывести РНК, которая отвечает за рост мембраны, но произошло ли это на самом деле? Авторы экспериментов из Массачусетсского технологического института США подчеркивают, что результаты, полученные в лаборатории, не обязательно будут похожи на реальную сборку живой клетки, а может быть, и вовсе далеки от истины. Впрочем, создать живую клетку в пробирке пока не удалось. Мир РНК не раскрыл до конца своих тайн.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.