Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека (11000)

Посмотреть архив целиком

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ


Кафедра ЭТТ





РЕФЕРАТ

На тему:


«Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека»

















МИНСК, 2008


Интеграция обмена углеводов, белков и жиров в организме.


Жизненные процессы организма связаны с постоянным поглощением веществ из окружающей среды и выделением продуктов распада в эту среду. Всю совокупность этих реакций объединяют общим понятием метаболизм или обмен веществ. Метаболизм представляет собой высоко координированную и целенаправленную клеточную активность, обеспечиваемую участием множества взаимосвязанных ферментных систем и означает превращение веществ внутри клеток с момента их поступления до образования конечных продуктов. Обмен веществ выполняет 4 специфические функции:

Обеспечение органов и систем химической энергией, вырабатываемой в процессе расщепления богатых энергией пищевых веществ.

Превращение молекул пищевых продуктов в строительные блоки, которые используются клеткой для построения макромолекул

Образование из этих строительных блоков молекул белков, нуклеиновых кислот, липидов, углеводов и других компонентов

Синтез и разрушение тех биомолекул, которые необходимы для выполнения определенных специфических функций клетки

Метаболизм слагается из протекания сотен различных ферментативных реакций, однако центральные метаболические пути у всех живых существ имеют единую природу.

Живые организмы активно участвуют в круговороте углерода и кислорода. Все они подразделяются на две большие группы в зависимости от того, в какой химической форме они способны усваивать поступающий из окружающей среды углерод. Клетки листьев зеленых растений (фотосинтезирующие клетки) используют в качестве единого источника углерод атмосферы в виде углекислого газа, из которого они строят все свои углеродсодержащие биомолекулы. Клетки высших животных не обладают способностью усваивать атмосферный углекислый газ и получают углерод в виде сложных органических соединений, расщепляя их для получения необходимой энергии ( например до глюкозы). Таким образом, в биосфере одни организмы потребляют углекислый газ и выделяют при этом в атмосферу кислород, а другие потребляют кислород, возвращая углекислый газ в атмосферу. Всем живым организмам, помимо источников углерода кислорода и энергии, необходим еще источник азота. Почти все высшие животные должны получать необходимый им азот в виде аминокислот, причем из 20 АК – 10 являются незаменимыми, так как организм не способен их синтезировать. Растения могут использовать в качестве источника азота аммиак или растворимые нитраты.

Таким путем совершается непрерывный круговорот углерода, кислорода и азота между животным и растительным миром. Источником энергии для этого процесса служит солнечный свет.

Метаболизм включает процессы распада веществ (катаболизм) и процессы синтеза (анаболизм)

Катаболизм – это фаза, в которой происходит расщепление сложных органических молекул до более простых конечных продуктов. Углеводы, жиры и белки, поступившие извне с пищей или присутствующие в самой клетке в качестве запасных веществ, распадаются в серии последовательных реакций до таких соединений как молочная кислота, углекислый газ и аммиак. Катаболические процессы сопровождаются выделением свободной энергии, заключенной в сложной структуре органических молекул, например, АТФ, НАДФН.

Анаболизм – это фаза обмена веществ, в которой из малых молекул предшественников или строительных блоков, синтезируются белки, нуклеиновые кислоты, жиры, углеводы и другие компоненты клеток. Так как биосинтез приводит к увеличению и усложнению молекул и структур, то он требует затраты свободной энергии. Источником этой энергии служат распад АТФ до АДФ и неорганического фосфора и богатые энергией водородные связи.

Катаболические и анаболические процессы протекают в клетках одновременно, однако их скорости регулируются независимо. Ферментативное расщепление главных питательных веществ, которые служат клетке источником энергии (углеводы, жиры и белки) совершается постепенно через ряд последовательных реакций.

В аэробном катаболизме (с участием кислорода) :

На первой стадии полисахариды (углеводы) распадаются до гексоз и пентоз, жиры до жирных кислот, глицерина , белки – до аминокислот.

На второй стадии распада веществ все эти продукты превращаются в еще более простые соединения. Так, гексозы, пентозы и глицерин расщепляются до одного и того же промежуточного продукта ацетил коэнзима А. Аналогичные превращения претерпевают жирные кислоты и аминокислоты. Их расщепление также завершается образованием ацетилкоэнзима А. Таким образом, ацетилкоэнзим А представляет собой общий конечный продукт второй стадии катаболизма.

На третьей стадии ацетильная группа ацетил КоА вступает в цикл Кребса (цикл лимонной кислоты) – общий конечный путь, на котором почти все виды клеточного топлива окисляются до углекислого газа, воды и аммиака.

Анаболические пути (синтез веществ) расходятся, и образуется много разнообразных молекул. Биосинтез начинается с малых молекул предшественников и протекает также в три стадии.

Катаболический и соответствующий ему, но противоположный по направлению, анаболический путь различаются по промежуточным продуктам реакций. Однако их связывает общая стадия, которая включает в себя цикл лимонной кислоты. На этой стадии завершается не только распад молекул (катаболизм), но происходит и процесс анаболизма, заключающийся в поставке молекул предшественников для биосинтеза молекул аминокислот, жирных кислот и углеводов. У взрослого здорового организма процессы распада и синтеза соответствуют друг другу и таким образом устанавливается динамическое равновесие. В растущем организме преобладают процессы биосинтеза над распадом.

Таким образом, почти все метаболические реакции в конечном счете связаны между собой. Регуляция метаболизма осуществляется на 3 уровнях:

Первый из них, наиболее быстро реагирующий на любое изменение связан с действием ферментов, обладающих не только каталитической, но и регуляторной активностью. Они как бы дирижеры, задающие темп метаболическим процессам.

Второй уровень регуляции метаболизма осуществляется под действием гормонов, вырабатываемых различными эндокринными железами и выделяемыми непосредственно в кровь. Гормоны переносятся кровью к другим органам и тканям, где стимулируют или тормозят определенные виды обмена веществ.

Третий уровень регуляции метаболизма связан с изменением процессов биосинтеза фермента вследствие увеличения или уменьшения того или иного субстрата в клетке. Так, если в организме избыток углеводов, то в печени синтезируются ферменты , катализирующие распад углеводов. Если же увеличивается количество белков, то в печени заметно повысится содержание ферментов, необходимых для расщепления АК.

Пути превращения белков, жиров и углеводов взаимосвязаны. Существует тесная энергетическая связь между ними, когда энергетические потребности организма обеспечиваются окислением какого-либо класса органических веществ, при недостаточном поступлении других. Так белки и аминокислоты используются для синтеза ряда соединений (пуриновых и пиримидиновых нуклеотидов, биогенных аминов). Аминокислоты, образующиеся в процессе обмена ацетоацетил КоА участвуют в синтезе жирных кислот. Глюкоза может также синтезироваться из аминокислот. Ацетил КоА, образующийся в процессе обмена углеводов, жиров, белков и ряда аминокислот служит пусковым субстратом в цикле Кребса.

Таким образом, преобладание распада ряда одних питательных веществ и биосинтеза других прежде всего определяется физиологическим состоянием и потребностями организма в энергии и метаболитах. Этими факторами в значительной степени может быть объяснено существование постоянного динамического состояния химических составных компонентов организма как единого целого. В организме человека как и в живой природе вообще не существует самостоятельного обмена белков, жиров , углеводов и нуклеиновых кислот. Все они объединены в единый процесс метаболизма, допускающий взаимопревращения между отдельными классами органических веществ.

Живой организм и условия его существования находятся в постоянной зависимости от условий окружающей среды. Обмен веществ в организме человека протекает не хаотично, а “тонко” настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. Синтез и распад взаимосвязаны, координированы и регулируются нейрогуморальными механизмами, придающими химическим процессам нужное направление. Интенсивность, направление любой реакции определяется ферментами, которые оказывают прямое влияние на обмен липидов, углеводов, нуклеиновых кислот. Синтез любого фермента-белка – требует участия ДНК и почти всех 3-х типов рибонуклеиновых кислот (транспортной, матричной и рибосомной РНК) Если к этому добавить влияние гормонов и различных продуктов распада (биогенных аминов), то видна согласованность и коодинированность огромного разнообразия химических процессов, совершающихся в организме, что определяется физиологическим состоянием и потребностями организма.

Проблема регуляции обмена веществ занимает особое место среди других проблем патологии, так как всякая патология и есть нарушение регуляторных процессов. Характерной особенностью регуляторных механизмов в живой природе является автоматизм. Саморегуляция биохимических процессов обмена веществ – одно из неотъемлемых свойств живой материи. Болезнь – это такое состояние при котором те или иные системы саморегуляции обычно выведены за пределы их физиологической адаптации. Механизмы саморегуляции обмена веществ живого организма развертываются на различных уровнях: молекулярном, клеточном, органном и целостного организма.


Случайные файлы

Файл
158458.rtf
110632.rtf
20717-1.rtf
111307.doc
57004.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.