Энтеральная нервная система (10948)

Посмотреть архив целиком














Реферат на тему:

«Энтеральная нервная система»


План


Введение

Регуляция вегетативных функций в гипоталамусе

Нейроны гипоталамуса, высвобождающие гормоны

Распределение и численность GnRH-секретирующих клеток

Циркадные ритмы

Выводы

Литература


Введение


Местные регуляторные рефлексы в кишечнике в высшей степени сложны и обеспечиваются огромным числом нейронов. Энтеральная нервная система содержит более 10 миллионов нервных клеток, расположенных в стенке кишечника и выполняющих функции сенсорных нейронов, интернейронов и мотонейронов. Все известные медиаторы присутствуют в этой системе (а многие из них были впервые обнаружены в кишечнике). Анализ внутренних рефлекторных цепей существенно затруднен тем, что эти рефлексы очень сложны и включают множество связей. Функциональный анализ представляет серьезную проблему даже в таких простых системах, как кишечник лангуста. Когда Сельверстон и коллеги начинали изучение стоматогастрических ганглиев, состоящих всего из 30 нейронов, то казалось, что им удастся полностью в них разобраться. Однако несмотря на значительные успехи, достигнутые путем электрического отведения от идентифицированных нейронов, и даже на открытие некоторых основополагающих принципов нейробиологии, полного понимания по-прежнему нет. То, что казалось на первый взгляд простой системой регуляции работы кишечника, оказалось не жесткой и статичной, а пластичной и изменчивой структурой.


Регуляция вегетативных функций в гипоталамусе


Существенная часть процессов управления в вегетативной нервной системе обеспечивается гормонами. Секреция гормонов железами (такими, как щитовидные, половые и кора надпочечников) регулируется релизинг-факторами, секретируемыми в ЦНС (обсуждается в следующих разделах). В свою очередь, гормоны оказывают обратное действие на ЦНС, регулируя секрецию релизинг-факторов, и замыкают, таким образом, петлю обратной связи.

Гипоталамус - это отдел мозга, который регулирует интегративные вегетативные функции, включая температуру тела, аппетит, потребление воды, дефекацию, мочеиспускание, частоту сердечных сокращений, артериальное давление, половую деятельность, лактацию, а также, в более медленной временной шкале, рост тела. Точность гомеостатических механизмов обеспечивает возможность каждому из нас поддерживать температуру тела около 37° С, кровяное давление около 120/80 мм рт. ст., частоту сердечных сокращений 70 ударов в минуту, потребление и выделение воды на уровне 1,5 литров в день, постоянное продвижение пищи по пищеварительному тракту с соответствующей секрецией, необходимой для пищеварения и абсорбции на каждом из уровней. Гипоталамус - это также отдел мозга, в котором эмоции сопрягаются с вегетативными ответами: мысль о пище приводит к секреции слюны, ожидание физической нагрузки - к повышению симпатической активности и т. д.

Другой тонко регулируемой функцией гипоталамуса является генерация в высшей степени точных и регулярных ритмов. К числу медленных относятся ритмы, контролирующие эндокринную секрецию. Например, половая и репродуктивная функции осциллируют с недельной периодичностью, которая зависит от секреции клетками гипоталамуса пептидных гормонов. Последние, в свою очередь, действуют на железы передней доли гипофиза, вызывая выделение в кровоток других гормонов.


Нейроны гипоталамуса, высвобождающие гормоны


Хорошо изученным примером гормональной секреции нейронов гипоталамуса является секреция релизинг-фактора гонадотропина (GnRH, то же что LHRH). Основной функцией этих нейронов является секреция GnRH в «портальную систему» кровеносных сосудов, напрямую соединяющих гипоталамус с передней долей гипофиза. Нейронально освобождаемый GnRH, таким образом, избирательно действует на железы, которые не имеют прямой иннервации, обеспечивая центральной нервной системе возможность контролировать гормональную секрецию. Выделившийся релизинг-фактор затем разбавляется в крупных сосудах кровеносной системы, в результате чего уже не может, к примеру, влиять на синаптическую передачу в вегетативных ганглиях. В передней доле гипофиза (аденогипофизе) GnRH возбуждает особые клетки, секретируюшие гонадотропин, гормон, необходимый для обеспечения репродуктивных ритмов и функций.

Это краткое упрощенное изложение не отражает элегантных экспериментов Хэрриса, который впервые показал, что локальное выделение релизинг-факторов в гипоталамусе представляет собой важный регуляторный механизм. Его концепция доставки химических сигналов через систему кровеносных сосудов путем целенаправленного транспорта была поистине революционной.

Интенсивность и временные параметры стимулов кодируются в виде рецепторных потенциалов, возникающих в чувствительных окончаниях сенсорных клеток. Рецепторные потенциалы могут быть деполяриэационными или гиперполяризационными; они возрастают по амплитуде с увеличением интенсивности раздражителя и достигают состояния насыщения при более высоких уровнях стимула. Во время длительного раздражения рецепторные потенциалы адаптируются, что проявляется в снижении их амплитуды. Адаптация может происходить как быстро, так и медленно. Она обусловлена механическими, электрическими или биохимическими процессами, происходящими в различных типах клеток. Рецепторы, которые адаптируются медленно, кодируют длительность стимула. Быстро адаптирующиеся рецепторы специализируются на выявлении изменений параметров раздражителя.


Распределение и численность GnRH-секретирующих клеток


GnRH-секретируюшие клетки рассредоточены по всему гипоталамусу и не образуют четко локализованных ядер или скоплений. Среди них выделяются лишь GnRH-секретирующие клетки, расположенные вблизи передней доли гипофиза (в срединном возвышении гипоталамуса), которые, как показано в предыдущем разделе, обеспечивают секрецию гонадотропина гипофизом. Высвобождение самих релизинг-факторов обеспечивается гормонами, такими как гормоны половых желез, образующими обратную связь с мозгом, и синоптическими входами, использующими различные медиаторы, включая норадреналин, дофамин, гистамин, глутамат и ГАМК Характерной особенностью GnRH-секретирующих клеток является их небольшая численность: 1300 у крысы и 800 у мыши. Однако крысы и мыши (да и люди тоже) просто вымерли бы без этих немногочисленных и разрозненных клеток мозга. Второе замечательное свойство этих клеток связано с их онтогенетическим развитием. У эмбрионов крыс с 10 по 15 дни развития клетки-предшественники впервые появляются в участке обонятельной плакоды. Это регион, из которого впоследствии развивается обонятельный эпителий. После деления, клетки мигрируют вдоль аксонов обонятельного нерва и достигают гипоталамуса. Проводящие пути и молекулярные механизмы миграции GnRH-секретирующих клеток были изучены на эмбрионах, новорожденных опоссумах и в культурах клеток. Поскольку все эти клетки могут быть надежно помечены антителами, специфичными к GnRH, их можно количественно учитывать как в месте их происхождения, так и по ходу миграции. Нейроны других типов тоже мигрируют вдоль тех же аксональных путей, что и GnRH-ceкретирующие клетки. Однако, не достигнув гипоталамуса, они отклоняются в сторону, попадая в совершенно другие области мозга.

Наряду с GnRH--секретируюшими клетками в гипоталамусе существуют особые популяции нейронов, секретирующих другие гормоны, необходимые для обеспечения вегетативных функций. Обмен веществ, функция щитовидной железы, абсорбция солей в почках, а также рост зависят от релизинг-факторов, которые секретируются в портальную систему и воздействуют через нее на переднюю долю гипофиза.

Особые нейроны гипоталамуса, расположенные в супраоптическом и паравентрикулярном ядрах напрямую иннервируют заднюю долю гипофиза. Их окончания высвобождают в кровь антидиуретический гормон (ADH), называемый также вазопрессином, и окситоцин. Следовательно, регуляция абсорбции воды почками и сокращений матки напрямую зависит от импульсной активности нейронов гипоталамуса.


Циркадные ритмы


Особо важную роль в жизнедеятельности животных имеют циркадные ритмы, контролирующие суточный цикл и цикл сон--бодрствование. В отсутствие каких-либо внешних сигналов, 24-часовые ритмическиециклы поддерживаются внутренними часами в течение продолжительного времени (недели и месяцы) как у беспозвоночных, так и у позвоночных), и даже в эксплантатах и культурах нейронов). Внутренний механизм синхронизации может быть изменен (или «навязан») воздействием регулярно чередующихся световых и темновых стимулов. Вегетативные функции находятся под сильным влиянием биологических часов, которые действуют на шишковидную железу и секрецию мелатонина.

Сведения о клеточных и молекулярных механизмах, позволяющих нейронам обеспечивать регулярные суточные циклы, были получены как на беспозвоночных, так и на позвоночных. Например, в зрительных путях ракообразных существует скопление секреторных нервных клеток, называемое глазным стебельком (eyestalk). В этой структуре можно поддерживать ритмы метаболической активности, секреции и импульсных разрядов, даже если изолированный орган поддерживается в культуре. На такой органотипическои культуре было проведено отведение электрической активности пейсмекерных клеток, охарактеризованы пептиды, выделяемые этими клетками, и проанализированы механизмы их действия. Более того, было показано, что ритм активности пейсмекерных нейронов в культуре может быть изменен путем навязывания чередующихся световых и темновых периодов.


Случайные файлы

Файл
2626.rtf
задача 32.doc
79476.rtf
125241.rtf
124960.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.