Физиология и генетика микроорганизмов (10792)

Посмотреть архив целиком

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГОУ ВПО «ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ И ЗООТЕХНИИ

Кафедра эпизоотологии, паразитологии и микробиологии







Реферат


Тема: Физиология и генетика микроорганизмов







Выполнил: студент 2 курса ИЛ группы 8217/2

Варламов С.

Проверил: Бондаренко В.В.






Благовещенск 2009 г.


Содержание:


Введение

  1. Химический состав

  2. Питание, дыхание и размножение

  3. Наследственность и генетические рекомбинации у бактерий

Заключение

Список литературы



Введение


Человек использовал бактерии, ещё не зная об их существовании. С помощью заквасок, содержащих Бактерии, приготовляли кисломолочные продукты, уксус, тесто и т.д. Впервые бактерии увидел А. Левенгук — создатель микроскопа, исследуя растительные настои и зубной налёт. К концу 19 — началу 20 вв. было выделено большое число бактерий, обитающих в почве, воде, пищевых продуктах и т.п., были открыты многие виды болезнетворных бактерий. Классические исследования Л. Пастера в области физиологии бактерии послужили основой для изучения у них обмена веществ. Вклад в исследование бактерии внесли русские и советские учёные С.Н. Виноградский, В.Л. Омелянский, Л. Исаченко, выяснившие роль бактерии в круговороте веществ в природе, который делает возможной жизнь на Земле. Это направление в микробиологии неразрывно связано с развитием геологии, биогеохимии, почвоведения, с учением В.И. Вернадского о биосфере.

Физиология микроорганизмов изучает жизнедеятельность микробных клеток, процессы их питания, дыхания, роста, размножения, закономерности взаимодействия с окружающей средой.

Выяснение физиологии этих микроорганизмов важно для постановки микробиологического диагноза, проведения лечения и профилактики инфекционных заболеваний, регуляции взаимоотношений животного организма с окружающей средой.

Генетика (от греческого genesis - происхождение) - наука о наследственности и изменчивости организмов. Начало генетики как науки положил Мендель, который, скрещивая между собой сорта гороха с качественно различающимися признаками, установил главные закономерности наследственности. Изучение и анализ законов передачи наследственных признаков от поколения к поколению, а также выяснение механизмов, обеспечивающих наследования на всех уровнях организации живых существ, является главной целью генетики. Успехи генетики стали возможны благодаря совместной работе микробиологов, генетиков, химиков и физиков, которые в своих исследованиях использовали микроорганизмы. Именно бактерии и вирусы оказались наиболее простой и удобной моделью для решения насущных проблем молекулярной генетики.



1. Химический состав


По химическому составу бактерии не отличаются от клеток других организмов. Бактериальная клетка содержит 80% воды и 20% сухого остатка. Около 90% сухого остатка бактерии составляют высокомолекулярные соединения: нуклеиновые кислоты (10%), белки (40%), полисахариды (15%}, пептидогликон (10%) и липиды (15%); остальные 10% приходятся на моносахара, аминокислоты, азотистые основания, неорганические соли и другие низкомолекулярные соединения. Вода - основной компонент бактериальной клетки. Она находится в свободном или связанном состоянии со структурными элементами клетки. В спорах количество воды уменьшается до 18—20%. Вода является растворителем для многих веществ, а также выполняет механическую роль в обеспечении тургора. При плазмолизе — потере клеткой воды в гипертоническом растворе — происходит отслоение протоплазмы от клеточной оболочки. Удаление воды из клетки, высушивание приостанавливают процессы метаболизма. Большинство микроорганизмов хорошо переносят высушивание. При недостатке воды микроорганизмы не размножаются. Высушивание в вакууме из замороженного состояния (лиофилязация) прекращает размножение и способствует длительному сохранению микробных особей.

Белки (40—80% сухой массы) определяют важнейшие биологические свойства бактерий и состоят обычно из сочетаний 20 аминокислот. В состав бактерий входит диаминопимелиновая кислота, отсутствующая в клетках человека и животных. Бактерии содержат более 2000 различных белков, находящихся в структурных компонентах и участвующих в процессах метаболизма. Большая часть белков обладает ферментативной активностью. Белки бактериальной клетки обусловливают антигенность и иммуногенность, вирулентность, видовую принадлежность бактерий.

Нуклеиновые кислоты бактерий выполняют функции, аналогичные нуклеиновым кислотам эукариотических клеток: молекула ДНК в виде хромосомы отвечает за наследственность, рибонуклеиновые кислоты (информационная, или матричная, транспортная и рибосомная) участвуют в биосинтезе белка.

Углеводы бактерий представлены простыми веществами (моно- и дисахариды) и комплексными соединениями. Полисахариды часто входят в состав капсул. Некоторые внутриклеточные полисахариды (крахмал, гликоген и др.) являются запасными питательными веществами.

Липиды в основном входят в состав цитоплазматической мембраны и ее производных, а также клеточной стенки бактерий, например наружной мембраны, где, кроме биомолекулярного слоя липидов, имеется ЛПС. Липиды могут выполнять в цитоплазме роль запасных питательных веществ. Липиды бактерий представлены фосфолипидами, жирными кислотами и глицеридами. Наибольшее количество липидов (до 40 %) содержат мвкобактерии туберкулеза.

Минеральные вещества бактерий обнаруживают в золе после сжигания клеток. В большом количестве выявляются фосфор, калий, натрий, сера, железо, кальций, магний, а также микроэлементы (цинк, медь, кобальт, барий, марганец и др.). Они участвуют в регуляции осмотического давления, рН среды, окислительно-восстановительного потенциала, активируют ферменты, входят в состав ферментов, витаминов и структурных компонентов микробной клетки.


  1. Питание, дыхание и размножение бактерий


Питание бактерий

Особенности питания бактериальной клетки состоят в поступлении питательных субстратов внутрь через всю ее поверхность, а также в высокой скорости процессов метаболизма и адаптации к меняющимся условиям окружающей среды.

Типы питания. Широкому распространению бактерий способствует разнообразие типов питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания, бактерии делятся на аутотрофы (от греч. autos - сам, trophe - пища), использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы (от греч. heteros -другой, trophe - пища), питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.

Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или животных, относят к патогенным и условно-патогенным. Среди патогенных микроорганизмов встречаются облигатные и факультативные паразиты (от греч. parasitos — нахлебник). Облигатные паразиты способны существовать только внутри клетки. например риккетсии, вирусы и некоторые простейшие. В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, не пользующие в качестве доноров водорода неорганические соединения, называют лйтотрофнымн (от греч. lithos — камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения — органотрофами. Учитывая источник энергии, среди бактерий различают фототрофы, т. е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемстрофы, нуждающиеся в химических источниках энергии.

Механизмы питания. Поступление различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600 Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп.

Наиболее простой механизм поступления веществ в клетку - простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липидную часть цитоплазматической мембраны (органические молекулы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны - собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых -цитоплазматическая мембрана.


Случайные файлы

Файл
131829.rtf
61236.rtf
82676.rtf
79862.rtf
186883.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.