Триумф рекомбинантных ДНК (10745)

Посмотреть архив целиком

Триумф рекомбинантных ДНК


Примерно к 1970 г. стали известны основные свойства генетических систем. Несмотря на отсутствие многих важных деталей, удалось установить принципы репликации, рекомбинации и репарации и каждый из этих процессов был воспроизведен in vitro. Была сформулирована центральная догма, согласно которой генетическая информация передается от ДНК к РНК и далее к белку, что создало основу для определения генотипа и фенотипа организма на молекулярном уровне. Был идентифицирован основной посредник при переносе информации от ДНК к белку–информационная РНК. Расшифрован генетический код, и в экспериментах с реконструированными клеточными компонентами в системе in vitro была получена информация о клеточном аппарате и основных механизмах трансляции м-РНК в белок. Подтвердилось предположение о том, что процессы транскрипции ДНК в РНК и трансляции РНК в белок регулируются и что существуют позитивный и негативный способы контроля функций генов. С расшифровкой генетического кода разрешился имеющий долгую историю вопрос о связи между химической структурой гена и кодируемого им белка и стало ясно, что мутации есть следствие изменений в структуре ДНК. В этот период выдающихся открытий неожиданной наградой исследователям стала идентификация многих ферментов, для которых нуклеиновые кислоты являются субстратом. Получение их в очищенном виде и определение свойств в значительной мере облегчило анализ структуры и функций нуклеиновых кислот, а применение в дальнейших исследованиях привело к созданию новой области молекулярной биологии – технологии рекомбинантных ДНК.

Несмотря на широко распространенное мнение, что всем генетическим системам присущи одни и те же основные свойства, процессы, происходящие в клетках прокариот, изучены значительно глубже, чем процессы, протекающие в эукариотических организмах. Действительно, провести генетический анализ небольших по размеру и менее сложно организованных бактериальных геномов значительно проще, чем геномов эукариот. Сравнительно легко удалось индуцировать и идентифицировать мутационные изменения в специфических генах. Случайный обмен генетической информацией между различными бактериями и некоторыми бактериями и их вирусами облегчил картирование этих генов, что в свою очередь позволило установить организацию бактериальных и фаговых геномов в целом. Еще более важное значение имело замечательное взаимопроникновение генетики и биохимии. Совместное использование генетических и биохимических методов способствовало разгадке сложного процесса репликации ДНК и даже позволило осуществить полноценную репликацию in vitro вирусных геномов. Благодаря объединению этих методов удалось получить отдельные гены в изолированном виде, что подготовило почву для изучения транскрипции и трансляции генов in vitro и идентификации молекулярных продуктов, участвующих в этих процессах. С помощью того же двустороннего подхода был установлен механизм регуляции экспрессии генов: было показано, что контроль осуществляется главным образом путем взаимодействия между специфичными белками и соответствующими регуляторными последовательностями в ДНК или информационной РНК.

В то же время успехи в расшифровке молекулярной структуры, организации и функций эукариотического генома были весьма скромными. Сложные генетические карты локусов, содержащих мутации, удалось составить лишь для тех немногих эукариотических организмов, с чьими генетическими системами можно было проводить манипуляции. По сравнению с ними генетические карты млекопитающих, в частности мыши и человека, представлялись сплошными «белыми пятнами». Еще более загадочными были молекулярная структура эукариотических генов и их организация в хромосомных ДНК, в частности наличие множественных повторов некоторых сегментов ДНК у большинства эукариот. Без более полного изучения молекулярной структуры геномов эукариот дальнейший прогресс в этой области был невозможен.

Биохимические исследования экспрессии и регуляции эукариотических генов также зашли в тупик из-за отсутствия информации о структуре клеточных генов. Было ясно, что ядерная ДНК эукариот транскрибируется в РНК и что мРНК транслируется в белки с помощью цитоплазматических комплексов рибосома–тРНК, во многом напоминающих прокариотические. Однако механизм транскрипции и последующая судьба транскриптов оставались совершенно загадочными. У многих эукариот только небольшая фракция ядерной РНК переходит в цитоплазму в виде информационной, рибосомной и транспортной РНК. Некоторые молекулы существуют в стабильной форме в виде коротких цепей РНК в составе рибонуклеопротеи-новых частиц, однако большинство из них быстро деградирует, не покидая ядра. Вопросы о природе быстро распадающейся РНК, ее происхождении и функции постоянно дебатировались. Проблема биогенеза информационной РНК также оставалась нерешенной из-за различий между мРНК про- и эукариот. У последних в начале и в конце молекул имеются особые структуры–так называемые кэпы и ро1у-хвосты соответственно. Это указывало на то, что информационная РНК эукариот в процессе биогенеза подвергается посттранскрипционным модификациям. Почему, где и как происходят такие модификации? Каково их значение? Каков путь превращения первичных транскриптов ДНК в зрелые молекулы информационной РНК? Далее, как осуществляется контроль транскрипции и превращений РНК, образованных на разных генах, в разных типах клеток одного и того же организма? Чем различаются механизмы экспрессии и регуляции генов у про- и эукариот? Из-за отсутствия молекулярно-генетической информации и методологии для ее получения эти вопросы первостепенной важности оставались нерешенными.

На фоне появления все новых данных об организации и экспрессии генетической информации у прокариот отсутствие таких данных для эукариот становилось все более ощутимым. Для преодоления такого отставания нужна была общая методология исследования клеточных геномов эукариот на молекулярном уровне. В идеале это позволило бы выделить дискретные гены и определить их молекулярную структуру и организацию геномов. При наличии таких изолированных генетических элементов можно было бы затем установить биохимические основы механизмов транскрипции и трансляции. Объективные предпосылки к этому появились лишь в первой половине 70-х годов, когда была разработана технология получения рекомбинантных молекул ДНК. Прежде чем обсуждать эти достижения, мы рассмотрим концепции и методологию, которые подготовили почву для решающих экспериментов. Они ведут начало от экспериментов в сфере бактериальной генетики, и особенно большую роль здесь сыграла возможность введения молекул ДНК в клетки бактерий. Такая введенная ДНК независимо от того, произошла ли она из бактериофага или из других бактериальных клеток, изменяет генотип, а нередко и фенотип реципиентной клетки. Гены донорной ДНК способны экспрессироваться и могут рекомбинировать с хромосомной ДНК.


Введение новой генетической информации в клетки бактерий


Бактерии могут приобретать новый генетический материал несколькими способами. Это: 1) трансформация, при которой в клетки проникают молекулы ДНК, добавленные в культуральную среду;

  1. конъюгация, в процессе которой ДНК непосредственно переносится от одной клетки к другой;

  2. опосредуемая бактериофагами трансдукция, при которой новая генетическая информация вводится в клетку с частицей бактериофага. Независимо от способа попадания в реципиентную клетку донорная ДНК рекомбинирует с гомологичными участками или специфическими сайтами в геноме реципиентного организма или сохраняется в виде автономной мини-хромосомы, изменяя таким образом генотип хозяина.

Трансформация бактерий

Трансформация, т.е. изменение генотипа клетки путем внесения в нее молекул ДНК из культуральной среды, была первым из способов введения новых генов в клетки бактерий. Это послужило также первым доказательством роли ДНК как носителя генетической информации. Если в клетки организма с определенным генетическим нарушением ввести ДНК, выделенную из нормальных клеток, то у этого организма нередко восстанавливаются утраченные функции. Такая трансформация является обычно наследственной и стабильной, поскольку в ее основе лежит рекомбинация между функциональным геном донорной ДНК и дефектным геном реципиента. Однако осуществляемая с помощью ДНК трансформация оказалась полезной только при изучении молекулярной генетики прокариот. В других случаях возможности трансформации ограничивались трудностями выявления трансформирующего гена, что делало нереальным определение его структуры. Тем не менее принцип трансформации нашел применение в другой области. Например, получение трансформированных клеток является важным этапом во многих экспериментах с рекомбинантными молекулами ДНК. Термин «трансформация» используется в молекулярной биологии эукариот для обозначения стабильного изменения генотипа и фенотипа клетки.

Конъюгация

При конъюгации осуществляется прямой перенос ДНК из одной клетки в другую при их контактировании. В тех случаях, когда конъюгация происходит между определенными штаммами E. coli, один из них выполняет функции донора, другой – реципиента. Эти эксперименты впервые показали, что все гены Е. coli расположены на одной кольцевой молекуле ДНК. Сравнивая время, необходимое для переноса различных генов во время конъюгации, можно построить генетическую карту хромосомы Е. coli, т.е. установить порядок следования хромосомных генов.


Случайные файлы

Файл
181904.rtf
92688.rtf
2634.rtf
3078-1.rtf
36780.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.