Биохимические реакторы (9974)

Посмотреть архив целиком

Министерство образования Российской Федерации

Самарский Государственный Университет










Реферат на тему:


БИОХИМИЧЕКИЕ РЕАКТОРЫ




Выполнила студентка 4 курса, 542 а группы

биологического факультета СамГУ

Киреева Ирина Александровна




















Самара

2001


Содержание


стр.

Введение …………………………………………………………………………………...

3

1. Классификация биохимических реакторов …………………………………………...

4

2. Устройство и принципы работы биохимических реакторов ………………………...

9

2.1. Реакторы с неподвижным слоем биокатализатора ………………………………...

9

2.2. Биореакторы типа барботажных колонн ……………………………………………

10

2.3. Биореакторы с псевдоожиженным слоем катализатора …………………………..

12

2.4. Реакторы с неподвижным слоем катализатора и со струйным течением жидкости………………………………………………………………………………


15

Заключение ………………………………………………………………………………..

17

Список литературы ………………………………………………………………………..

18


Введение


Рассматривая многообразные реакторные устройства, применяемые в настоящее время в биохимических производствах, можно сделать вывод, что во всех реакторах происходят определенные физические процессы (гидродинамические, тепловые, массообменные), с помощью которых создаются оптимальные условия для проведения собственно биохимического превращения вещества (биохимической реакции). Для осуществления этих биохимических процессов биохимический реактор снабжается типовыми конструктивными элементами, широко применяемыми в аппаратах для проведения собственно биохимических процессов (мешалки, контактные устройства, теплообменники и т.д.). Поэтому все биохимические реакторы представляют собой комплексные аппараты, состоящие из известных конструктивных элементов, большинство которых используется для проведения технологических операций, не сопровождающихся биохимическим превращением перерабатываемых веществ. Количество таких конструктивных сочетаний, а значит, и типов реакторов может быть достаточно большим, что объясняется многообразием и сложностью протекающих биохимических реакций. Однако, для всех биохимических реаторов, существуют общие принципы, на основе которых можно найти связь между конструкцией аппарата и основными закономерностями протекающего в нем биохимического процесса.

Критериями, по которым можно классифицировать реакционные аппараты, являются периодичность, или непрерывность процесса, его стерильность, гидродинамический режим, тепловой эффект и требуемое количество кислорода для реакций биосинтеза, а так же физические свойства (аргегатное, фазовое состояние) взаимодействующих веществ. Основные типы реакторов описаны ниже.



1. Классификация биохимических реакторов


По принципу организации процесса биохимические реакторы подразделяются на три группы.

В реакторе периодического действия (рис. 1) все отдельные стадии процесса протекают последовательно, в разное время. Характер изменения конценраций реагирующих веществ одинаков во всех точках реакционного объема, но различен по времени для одной и той же точки объема. В таком аппарате продолжительностль реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры технологического процесса в периодически действующем реакторе изменяются во времени. Реакторы периодического действия мало производительны и плохо поддаются автоматическому контролю и регулированию.

В реактроре непрерывного действия (рис. 2) все отдельные стадии процесса биохимического превращения вещества (подача реагирующих веществ, биохимические реакции, вывод конечного продукта) осуществляются параллельно, одновременно. Характер изменения концентраций реагирующих веществ в реакционном объеме различен в каждый момент времени в разных точках объема аппарата, но постоянен во времени для одной и той же точки объема.

В таких аппратах технологические параметры процесса постоянны во времени. Однако, продолжительность реакции в реакторах непрерывного действия нельзя измерить непосредственно.

В аппаратах непрерывного действия время реакции не может совпадать с временем пребывания реагентов, так как каждая элементарная частица вещества находится в реакционном объеме разное время, и, следовательно, общее время пребывания зависит от характера распределения времени пребывания отдельных частиц. В общем случае время реакции зависит от интенсивности перемешивания, структуры потоков в аппарате, и для каждого гидродинамического типа реактора оно индивидуально.

Непрерывно действующие реакторы высокопроизводительны, легко поддаются механизации при обслуживании и автоматическому контролю и регулированию при управлении, в том числе с применением быстодействующих электронно-вычислительных машин.

Реактор полунепрерывного (полупериодического) действия (рис. 3) работает в неустановленных условиях, так как один из реагентов поступает непрерывно, а другой – периодически. Возможны варианты, когда реагенты поступают в реактор периодически, а продукты реакции выгружаются непрерывно. Такой реактор можно рассматривать как непрерывнодействующий аппарат, в котором потоки входящего и выходящего из реактора вещест не равны, и, кроме того, как периодически действующий аппарат, в котором ввод одного из реагирующих веществ или вывод продукта реакции осуществляется периодически. Реакторы полупериодического действия используются тогда, когда изменения скорости подачи реагентов позволяет регулировать скорость процесса.

В таблице 1 сопоставлены факторы определяющие периодичность и непрерывность процесса в реакторе.

Таблица 1

Факторы

Тип процесса

периодический

Непрерывный

Период процесса  - время между проведением отдельных стадий процесса (например, между двумя смежными выгрузками продукта).

 > 0

  0

Степень непрерывности процесса  (где  - время, необходимое для проведения всех стадий процесса).

 > 1

  0

Последовательность отдельных стадий процесса.

Последовательно

Параллельно

Место проведения отдельных стадий процесса.

В одном аппарате

В нескольких аппаратах или в разных частях одного аппарата

Характер изменения концентраций реагирующих веществ в реакционном объеме

Одинаков во всех точках объема реактора, но различен во времени для одной и той же точки объема

Различен в каждый момент времени


По гидродинамическому режиму (структуре потоков) ректоры делятся на три группы.

Реакторы идеального (полного) перемешивания – аппараты, в которых потоки реагентов мгновенно и равномерно перемешиваются во всем реакционном объеме. Это значит, что состав и температуру реакционной смеси в таком аппарате можно считать одинаковыми во всем его объеме. На рисунке 4а предствлена типичная зависимость изменения концентрации субстрата во времени в таком реакторе.

К такому типу реакторов могут быть отнесены аппараты малого объема с механическим перемешиванием жидкости, частотой вращения мешалки не менее 4 с–1 и временем гомогенизации не более 8 минут.

Реакторы идеального (полного) вытеснения – аппараты, в которых движение реагентов носит поршеневой характер, то есть каждый предыдущий объем, проходящий через аппарат, не смешивается с последующим, так как вытесняется им. В таком аппарате существует определенное распределение скоростей потока по его сечению. В результате состав, а так же температура реакционной смеси в цетре аппарата и у его стенок различны; и температур на входе и выходе из аппарата. К таким аппаратам относятся трубчатые реакторы при соотношении их высоты к диаметру, равным не менее 20 (H/D ≥ 20). Однако, в больших реакционных объемах, как правило, режим полного (идеального) вытеснения нарушается за счет эффекта обратного перемешивания. Типичная зависимость изменения концентрации во времени для такого аппарата представлена на рис 4б.

Реакторы с промежуточным гидродинамическим режимом. Этот тип аппаратов очень широко распространен на практике. Наиболее часто отклонение от идеального режима пермешивания в реакционном объеме наблюдается, например, в аппаратах большого объма при недостаточной частоте вращения мешалки, наличии теплообменных устройств внутри аппарата, большой скорости подачи реагентов в аппарат непрерывного действия и т.д. В этих случаях возникают застойные зоны (объемы с малым перемешиванием или вообще без перемешивания), байпасные потоки в аппарате а так же проскок потока без смешения через аппарат. (рис. 5)

На рисунке 4в показана характерная зависимость изменения концентрации субстрата во времени в таком реакторе.

В аппаратах идеального вытеснения регулярный гидродинамический режим может быть нарушен в результате поперечного и особенно продольного пермешивания потока (рис. 6), что приводит к частичному выравниванию концентраций и температур по сечению и длине реактора. Объясняется это тем, что продольное (обратное) пермешивание ускоряет перемещение одних элементов объема, а других – замедляет, вследствие чего время пребывания их в реакторе становится различным.

Одним их технических приемов уменьшения эффекта продольного пермешивания является секционирование реакционного объема (рис. 7), в результате чего пермешивание приобретает локальный характер и по длине аппарата сохраняется гидродинамический режим, близкий к режиму полного вытеснения.

Типичная зависимость изменения концентрации субстрата во времени в многосекционном аппарате представлена на рисунке 4г.

К аппаратам с промежуточным гидродинамическим режимом относятся большинство ферментеров колонного типа.

Реактор, как аппарат, в котором протекает основной процесс биотехнологии – образование нового продукта в результате сложного взаимодействия исходных веществ, должен работать эффективно, то есть обеспечивать требуемую глубину и избирательность биохимического превращения. Следовательно, биохимический реактор должен удовлетворять ряду различных требований: иметь необходимый реакционный объем, обеспечивать определенный гидродинамический режим движения реагентов, создавать требуемую поверхность контакта взаимодействующих фаз, поддерживать необходимый теплообмен в процессе, режим аэрации и т.д.

В промышленных условиях важнейшее значение приобретает не только скорость биохимического превращения вещества, но и производительность аппаратуры, поэтому выбор типа и конструкции оборудования является одним из главных и отвествтвенных этапов реализации химико-технологического процесса.

По конструкции биохимические реакторы классифицируются следующим образом:

  • реакторы емкостного типа (типа реакционной камеры);

  • реакторы типа колонны;

  • реакторы трубчатого типа;

  • реакторы пленочного типа;

  • реакторы мембранного типа;

  • реакторы с псевдоожиженным слоем (рис. 8).

Конструктивный тип реактора зависит от условий проведения процесса и свойств участвующих в нем веществ.

К важнейшим из факторов, определяющий устройство реактора, относятся: агрегатное состоянияние исходных веществ и продуктов реакции, а так же их биохимические и микробиологиеческие свойства; температрура и давление, при которых протекает процесс; тепловой эффект процесса и скорость теплообмена; интенсивность переноса массы (массообмен), перемешивания реагентов; непрерывность или периодичность процесса; удобство монтажа и ремонта аппаратуры, простота его изготовления; доступность конструкционного материала и т.д.

Из всех перечисленных выше факторов агрегатное состояние вещества оказывает наибольшее влияние на принцип организации движения взаимодействующих фаз и определяет конструктивный тип реакционного устройства. Кроме того, от этого фактора зависит выбор некоторых основных и вспомогательных деталей аппарата, таких как, например, перемешивающее устройство, поверхность теплообмена и др.

С точки зрения определения технологических возможностей биохимических реакторов целесообразно систематизировать с учетом основных гидродинамических и массообменных показателей. Эти показатели будут в значительной мере зависеть от количества и способа подвода энергии на перемешивание и аэрацию в реакторах. В соответствии с этим все биохимические реакторы (ферментеры) могут быть отнесены к трем группам.

Реакторы с подводом энергии через газовую фазу (рис. 9). Эта группа аппаратов отличается простотой конструкции и надежностью эксплуатации, так как отсутствуют движущие детали и узлы. К таким аппаратам относятся, например, барботажные эрлифтерные ферментеры.

Реакторы с подводом энергии через жидкую фазу (рис. 10). Характерным конструктивным признаком таких аппаратов является наличие самовысасывающего элемента, или насоса. К этой группе аппаратов можно отнести, например, ферментеры с самовысасывающими перемешивающими устройствами, с эжекционной системой перемешивания и аэрации, с внешним циркуляционных контуром.

Реакторы с комбинированным подводом энерги (рис. 11). Основной конструктивных элемент таких аппаратов – перемешивающее устройство, обеспечивающее высокоэффективное диспергирование и гомогенизацию. К этой группе относятся высокоинтенсивные аппараты с механическим перемешиванием и одновременно барботажем сжатым воздухом.

Биохимический реактор имеет ряд устройств и даже целых узлов, с помощью которых к нему присоединяются основное и вспомогательное оборудование, а так же арматура и контрольно-измерительные приборы.



2. Устройство и принципы работы биохимических реакторов

2.1. Реакторы с неподвижным слоем биокатализатора


Колонны с насадкой иммобилизованного катализатора в настоящее время используются в нескольких промышленных процессах, и есть все основания полагать, что в ближайшее время область их применения существенно расширится. В таких реакторах, называемых реакторами с неподвижным слоем катализатора, с помощью иммобилизованных ферментов осуществляют изомеризацию глюкозы, частичный селективный гидролиз пенициллина, селективное расщепление смеси производных рацемических аминокислот. В реакторах с неподвижным слоем изучались также процессы с участием иммобилизованных клеток.

В простейшем и часто довольно успешно применяющемся математическом описании работы реактора с неподвижным слоем катализатора в основу положена модель реактора полного вытеснения, модифицированная с целью учета влияния каталитической насадки на структуру течений и кинетику реакций. Поверхностную скорость потока через реактов определяют как объемную скорость потока исходных веществ, отнесенного к площади поперечного сечения пустот, которое представляет собой произведение общей площади поперечного сечения колонны на долю пустот .

Для простой реакции S→T, протекающей с собственной скоростью v = v (s, p), скорость образования продукта в единице объема гранулы иммобилизованного катализатора в какой-либо определенной точке реактора равна:


vобщ = (ss, ps)v(ss, ps) (1)


Здесь ss и ps – концентрации субстрата и продукта соответственно на наружной поверхности частицы катализатора в данной точке объема реактора. Как указано в уравнении (1), в общем случае коэффициент эффективности , определяющий скорость диффузии в частицу катализатора, и скорость реакции v зависят как от ss, так и от ps.


Случайные файлы

Файл
17907.rtf
47108.rtf
74965-1.rtf
REFERAT1.doc
159484.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.