Механизмы устойчивости опухолей к цисплатину (9669)

Посмотреть архив целиком



ЗМІСТ


1. Транспорт цисплатина 2

2. Внутрішньоклітинна мішень цисплатина 4

3. Вплив цисплатина на клітинний цикл та індукція апоптозу 5

4. Механізми резистентності пухлинних клітин до цисплатина 7

4.1. Механізми клітинної резистентності на

рівні цитоплазматичної мембрани 7

4.2. Внутрішньоклітинні тіолові детоксикуючі системи 9

4.2.1. Система глутатіону 9

4.2.2. Металотеонеіни 10

4.3. Репарація пошкоджень ДНК 11

4.4. Зміни генома, що асоційовані з резистентністю

до цисплатина 15


Список використаних джерел 21











Цисплатин є одним з найбільш загальновживаних препаратів у лікуванні солідних пухлин людини. Однак ефективне застосування цисплатина у клініці часто лімітується токсичністю препарату та розвитком резистенстності до нього. Резистентність до цисплатина має комплексний характер і пов`язана з рядом особливостей пухлинних клітин, включаючи зміни в проникності цитоплазматичної мембрани, підвищення активності детоксикуючих та репаративних систем клітини, порушення експресії генів fos, nm23, p53, mdm2, bcl-2 та інші. Порушення біохімічних сигнальних шляхів апоптозу також можуть бути основою для розвитку резистентності. Розуміння молекулярних основ дії цисплатина та механізмів розвитку резистентності до нього дозволять значно покращити результати клінічних випробувань препарату.


1.Транспорт цисплатина


Взаємодія цисплатина з плазматичною мембраною є першою щаблею багатостадійного процесу реалізації цитотоксичного ефекту препарату. Ступінь пошкодження мембран цитостатиком залежить від текучості їх ліпідної компоненти, яка визначається швидкістю проходження процесів перекисного окислення ліпідів [1].

На сьогодні існують дві гіпотези поглинання препарату пухлинною клітиною. Більш аргументована гіпотеза пасивного транспорту, основана на фактах відсутності інгібування переносу цисплатина за допомогою його структурних аналогів та проникнення цисплатина в клітину без насичення до межі його розчинності у культуральному середовищі [2]. Але ряд вчених відстоює ідею існування активного транспортера цисплатина. У 1984 році був відкритий інгібітор синтезу протеінів бензальдегід, який послаблював цитотоксичний ефект цисплатина за рахунок зменшення його накопичення в клітині. Інший відомий інгібітор білкового синтезу – циклогексамід не мав такого ефекту. Це й стало основою для заключення, що бензальдегід якимось чином безпосередньо реагує з мембранним білком-транспортером, уповільнюючи таким чином проникнення цисплатина у клітину [3].

Піздніше було знайдено, що альдегідні похідні пиридоксаль та пиридоксаль-5-фосфат також значно послаблюють цитотоксичну активність цисплатина. Відомо, що ці речовини утворюють основи Шиффа з аміногрупами на поверхні клітини. Було показано, що і бензальдегід і інші похідні інгібують проникнення цисплатина у клітину на 50% у порівнянні з контролем. Є дані про те, що попередня інкубація клітин з інгібітором Nа/К АТФ-ази уабаіном також зменшує проникнення цисплатина у клітину на 50%. Подальші дослідження у цьому напрямку показали, що безпосередньо Nа/К АТФ-аза не є транспортером цисплатина, однак транспорт ліків Na-залежний, а також залежить від мембранного потенціалу клітини [4,5].

Розглянемо загальновживану модель акумулювання цисплатина в клітині, яка влаштовує прибічників обох гіпотез. Швидке накопичення половини цисплатина у клітині проходить за рахунок пасивної дифузії, тоді як інша половина транспортується через канали, що закриваються. Якщо активність останніх заблоковано, то можна очикувати зменшення проникнення цисплатина в клітину на 50%. Дані про регуляцію активності каналів дозволяють зробити висновок, що проходження цисплатина через них регулюється каскадом реакцій фосфорилювання, що ініціюються протеінкіназою А (РКА), протеінкіназою С (РКС) чи кальмодулінзалежними кіназами [3]. Здатність мембранонепроникних альдегідних похідних блокувати накопичення цисплатина у клітині на 50% обумовлюється реактивністю зовнішніх аміногруп білків, що формують такий канал. Той факт, що інгібування початкового потоку цисплатина у клітину на 50% відбувається за допомогою уабаіна, підтверджує, що повний мембранний градієнт, зумовлений Na/K АТФ-азою, важливий для роботи каналів.

Bиведення цисплатина з клітини – двохфазний процес з дуже короткою почaтковою фазою тривалістю 5 хв та більш довгою кінцевою фазою [6,7]. Встановлено існування АТФ-залежного переносника цисплатина кон`югованого з глутатіоном [8,9]. Описана АТФ-залежна глутатіон-S-кон`югат експортуюча помпаS-Х-помпа) , що має широкий спектр субстратної специфічності та транспортує органічні аніони, лейкотрієн С4 та інші сполуки, що несуть великі гідрофобні ділянки та хоча б два від`ємні заряди. ГS-Х-помпа виводить потенційно токсичні кон`югати глутатіон-S-платина (ГS-Pt) з пухлинних клітин, таким чином беручи участь в формуванні резистентності клітин до цисплатина [10].



2.Внутрішньоклітинна мішень цисплатина.


Внутрішньоклітинною мішенню цисплатина є ДНК, з якою препарат ковалентно зв`язується. Біфункціональні продукти взаємодії цисплатина з ДНК, що називаються цисплатин-ДНК-адукти, блокують реплікацію, транскрипцію і, як наслідок, - клітинну проліферацію. Цисплатин діє на 7-му позицію залишка гуаніна та формує декілька типів адуктів з основами ДНК. Два основні адукти це G-G внутрішньоланцюгові зшивки (складають 60-65% усіх адуктів), A-G внутрішньоланцюгові зшивки ( 20-25% усіх адуктів), а також міжланцюгові та ДНК-білкові зшивки [11]. Після дії цисплатина основна кількість адуктів утворюються вже через 6-12 годин [12]. Формування адуктів відбувається в два етапи. Спочатку має місце швидкий етап алкілування: один ланцюг ДНК формує цисплатин-моноадукт. Далі повільна фаза: реакція з`єднання з другим ланцюгом.

Більшість робіт у напрямку дослідження взаємодії цисплатина та ДНК стосується ядерної ДНК. Але в останні роки вчених зацікавила у цьому відношенні мітохондріальна ДНК. Виявилось, що ця ДНК у 4-50 разів (для різних модельних систем) більш чутлива до пошкоджуючого ефекту цисплатина, ніж ядерна ДНК [13,14]. А у зв`язку з сучасними уявленнями про роль мітохондрій у реалізації програми апоптозу цей факт набуває нового значення.



3.Вплив цисплатина на клітинний цикл та індукція апоптозу.


Відомо, що у багатьох модельних системах in vitro цисплатин не э фазоспецифічним протипухлинним препаратом. Пухлинні клітини у різних фазах клітинного циклу однаково чутливі до нього [15]. Але дані деяких досліджень свідчать про те, що все таки у фазі G2/M клітини є більш чутливими до дії цитостатика [16]. Низькі концентрації цисплатина у клітинах викликають уповільнене проходження S-фази і зупинку у G2/M-фазі клітинного циклу [17]. В залежності від концентрації препарату і, відповідно, пошкодження ДНК, клітина після G2/M-зупинки вступає в наступну фазу клітинного циклу – мітоз, або входить в апоптоз. Щодо дії цитостатика на регулятори клітинного циклу, то встановлено, що цисплатин не впливає на внутрішньоклітинний вміст цикліну А [18]. Але при дії препарату збільшуються рівні цикліну В, p34cdc2 а також зростає активність гістон Н1-кінази [19]. Після дії цисплатина підвищується експресія цикліну D1, cdk4, а також збільшується рівень фосфорилювання білка ретинобластоми, тобто з`являються усі ознаки руху клітини по клітинному циклу [20]. І дійсно, якщо обробляти цисплатином клітини, що знаходяться у стані спокою (G0), вони виходять у G1-фазу, повільно проходять S-фазу і зупиняються у G2/M-фазі клітинного циклу.

Після пошкодження ДНК цисплатином у клітинах відбувається збільшення експресії білка Р53 і Р53-залежне підвищення експресії білка р 21, який і спричиняє зупинку клітинного циклу [21].

Субтокичні дози цисплатина індукують загибель клітин за типом апоптозу, з усіма характерними біохімічними та морфологічними ознаками процесу: екстерналізацією фосфотидилсерину, активацією каспаз, фрагментацією ДНК, утворенням апоптичних тілець [22-24].

В багатьох модельних системах in vitro показано, що лікарські протипухлинні препарати, в тому числі і цисплатин, викликають підвищення експресії поверхневого рецептора Fas, що потребує синтезу білка de novo [25], а також його ліганда FasL [26]. Але на сьогодні вважається, що індукований проитипухлинними ліками апоптоз не є залежним від активації безпосередньо Fas-системи, оскільки вживання антагоністичних анти-CD95 моноклональних антитіл не впливало на розвиток апоптозу під дією цитостатиків [27].

Особливо цікавими є дані щодо ефекторних механізмів апоптозу, індукованого цисплатином. Відомо, що у цьому процесі бере участь каспаза-3, оскільки застосування її інгібіторів білка CrmA та Z-VAD-CH2DCB призводить до гальмування апоптозу, спричиненого цитостатиком [28,29]. Каспаза-3 активує інші каспази, крім того розщіпляє фактор ініціації трансляції 4G (eIF4G), що призводить до гальмування синтезу білка [30].



4.Механізми резистентності пухлинних клітин до цисплатина.

4.1.Механізми клітинної резистентності на рівні цитоплазматичної мембрани


Одним з основних механізмів клітинної резистентності до цисплатина розглядають особливості будови цитоплазматичної мембрани та прямого та зворотнього транспорту крізь неї.

Однією з особливостей пухлинних клітин, резистентних до дії цисплатина, є зменшена у порівнянні з чутливими клітинами акумуляція препарату [31,32].

Дана модель пояснює, чому так багато клітинних ліній резистентних до дії цисплатина відрізняються зменшеним накопиченням цисплатина. Мутації, що призводять до змін структури каналів чи гіперполяризації клітинної мембрани, можуть спричинити виникнення резистентного клона клітин.


Случайные файлы

Файл
80220.doc
97225.rtf
28101.rtf
1732-1.rtf
3363-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.