Возникновение злокачественных опухолей (9538)

Посмотреть архив целиком

Министерство образования Российской Федерации

Уральский Государственный Технический Университет – УПИ

Кафедра Технологии органического синтеза











РЕФЕРАТ:


РОЛЬ ВИРУСОВ И ПЛАЗМИД В ОПУХОЛЕОБРАЗОВАНИИ









Выполнил:

студент гр. Х-449

Покровский П.В.





















Екатеринбург

2001

1. Введение


Возникновение злокачественных (раковых) опухолей может иметь различные причины, однако во всех случаях к этому причастен генетический материал клетки – ее ДНК. Что бы ни привело к образованию опухоли (раковому перерождению), последующим ростом ткани управляет ДНК безудержно делящихся опухолевых клеток. В основе превращения нормальной клетки в злокачественную – опухолевой трансформации – лежит перенос или иное изменение ДНК. Агент, вызывающий пролиферацию клеток, - это продукт гена. До сих пор, правда, не удается создать общую теорию, которая охватывала бы все формы ракового перерождения, однако изучение злокачественных опухолей, вызванных вирусами и плазмидами, уже сейчас позволяет сделать далеко идущие выводы.

Мы рассмотрим три примера онкогенеза: 1) образование опухолей у растений, 2) развитие опухолей у животных под воздействием ДНК-вирусов и 3) развитие опухолей у животных под воздействием РНК-вирусов (ретровирусов).


2. Образование опухолей у растений.


У многих растений встречаются опухоли корневой шейки. Эти разрастания ткани уменьшают поток питательных веществ между подземными и надземными частями. У многих растений такие опухоли можно вызвать экспериментально; типичные результаты получаются больше чем у половины изученных видов (рис. 1). Возбудителем является Agrobacterium tumefaciens – грам-отрицательная почвенная бактерия с перитрихальными жгутиками, сходная с представителем рода Rhizobium. Бактерии проникают в ткань через поврежденные участки и размножаются в межклетниках. Бывают вирулентные и авирулентные штаммы A. tumefaciens; вирулентные содержат большую плазмиду, так называемую Ti-плазмиду (Ti – Tumor Inducing, индуцирующая опухоль). После заражения ткани плазмиды проникают в растительные клетки.

Плазмидная ДНК прочно интегрируется в хромосомную ДНК растительных клеток и вызывает их опухолевый рост. Путем прививки таких клеток можно передать опухоль здоровому растению; таким образом, после того как клетки претерпели опухолевую трансформацию, бактерия и ее плазмида становятся уже ненужными. Интегрированная ДНК плазмиды ответственна также за способность клеток вырабатывать новые ферменты, с помощью которых синтезируются аминокислоты октопин и нопалин, так называемые опины. Эти аминокислоты могут использоваться бактерией A. tumefaciens в качестве источника углерода и азота. Благодаря Ti-плазмиде Agrobacterium получает, таким образом, преимущественный доступ к продуктам фотосинтеза растения: Ti-плазмида обеспечивает образование аминокислот, которые могут быть усвоены только этой бактерией.

Наряду с этим Ti-плазмида представляет собой естественный генный вектор для переноса чужеродной ДНК в растения. Гены, определяющие опухолевый рост, можно выделить из плазмиды и заменить другими генами. Из тканей, состоящих из клеток, трансформированных видоизмененной плазмидой, удавалось регенерировать целые растения табака, которые росли совершенно нормально и вдобавок ко всему синтезировали опины. Таким образом, гены чужеродной ДНК передавались как доминантные факторы в соответствии с обычными законами наследственности.

Поиски путей введения чужеродных генов в клетки высших растений интенсивно ведутся во всем мире с начала 70-х годов. Одним из импульсов к развитию методов переноса чужеродных генов в растения стали результаты детального изучения молекулярно-генетических основ опухолевого роста у растений при участии бактерий рода Agrobacterium. В результате этих исследований оказалось, что опухолеобразующие плазмиды агробактерий, представляющие собой мини-кольцевые ДНК, являются природной векторной системой, которую сейчас используют для переноса генов в растения. Плазмида агробактерии переносит часть своей ДНК в ДНК растительной клетки, в ДНК встраивается "нужный" ген. С помощью этого уникального вектора уже получено большое число трансгенных растений. Важно также то, что методы генной инженерии сейчас используют не только в практике, это важнейшая методология для познания фундаментальных основ организации и функционирования растительного генома.

2.1. ЧТО ТАКОЕ ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ РАСТЕНИЙ

Генетическая инженерия - это система экспериментальных приемов, позволяющих конструировать искусственные генетические структуры в виде так называемых рекомбинантных (гибридных) молекул ДНК. Суть генетической инженерии сводится к переносу в растения чужеродных генов, которые могут сообщать растениям полезные свойства. Такие манипуляции осуществляются с помощью соответствующих ферментов - рестрикционных эндонуклеаз, расщепляющих молекулы ДНК в строго определенных участках, и лигаз, сшивающих фрагменты в единую рекомбинантную молекулу ДНК.

Итак, процедуры генетической инженерии сводятся к тому, что из набора фрагментов ДНК, содержащих нужный ген, собирают гибридную структуру, которую затем вводят в клетку. Введенная генетическая информация экспрессируется, что приводит к синтезу нового продукта. Таким образом, вводя в клетку новую генетическую информацию в виде гибридных молекул ДНК, можно получить измененный организм.

Растения имеют одно очень важное преимущество перед животными, а именно возможна их регенерация in vitro из недифференцированных соматических тканей с получением нормальных, фертильных (способных завязывать семена) растений. Это свойство (тотипотентность) открывает для молекулярных биологов большие возможности в изучении функционирования генов, введенных в растения, а также используется в селекции растений. Для конструирования растений необходимо решить следующие задачи: выделить конкретный ген, разработать методы, обеспечивающие включение его в наследственный аппарат растительной клетки, регенерировать из единичных клеток нормальное растение с измененным генотипом. Таким образом, методология генетической инженерии в отношении растений направлена на коренное изменение методов традиционной селекции, с тем чтобы желаемые признаки растений можно было получать путем прямого введения в них соответствующих генов вместо длительной работы по скрещиваниям.

Формальной датой рождения генетической инженерии растений является полученное с помощью Ti-плазмидного вектора первое в мире химерное растение санбин (sunbeen) как результат переноса гена запасного белка бобовых (фазеолина) в геном подсолнечника (sunflower + been). Это было первым ощутимым, хотя, быть может, и несовершенным свидетельством того, что в отношении растений генетическая инженерия сможет оправдать надежды специалистов в области молекулярной генетики, биологии и селекции.

2.2. КОРОНЧАТЫЕ ГАЛЛЫ РАСТЕНИЙ

В группе почвенных бактерий, известных под общим названием Agrobacteria, есть несколько видов, которые могут заражать растения и вызывать образование опухолей, называемых корончатыми галлами, состоящими из недифференцированной опухолевой ткани, растущей в месте заражения. Клетки корончатых галлов во многих отношениях напоминают раковые клетки животных. Они приобретают способность к неограниченному, нерегулируемому росту. Когда клетки корончатых галлов культивируют in vitro, они растут при отсутствии специальных гормонов, которые необходимы при культивировании нормальных растительных клеток. Более того, клетки корончатых галлов продолжают сохранять эти свойства (трансформированный фенотип), даже если убить бактерии антибиотиками. Изучение индуктора опухолей Agrobacterium tumefaciens показало, что собственно опухолеродным агентом у этой бактерии является Ti-плазмида, которая частично интегрируется в хромосомы растений.

2.3. АГРОБАКТЕРИАЛЬНАЯ ТРАНСФОРМАЦИЯ РАСТЕНИЙ: Ti-ПЛАЗМИДЫ

В A. tumefaciens помимо хромосомы содержится Ti-плазмида. Плазмида содержит Т-ДНК (transferred DNA), которая составляет 12-22 тыс. пар оснований и встраивается в ДНК растительной хромосомы. Она кодирует ферменты синтеза фитогормонов и опинов - производных аминокислот, которые используются бактерией как источник углерода, азота и энергии.

Кроме Т-ДНК в Ti-плазмиде содержатся vir-область, отвечающая за перенос Т-ДНК в растение, гены утилизации опинов, а также локусы, контролирующие размножение плазмиды в бактериальной клетке и ее перенос при бактериальной конъюгации. Доказательства того, что именно Ti-плазмиды, а не хромосомные гены бактерий ответственны за поддержание трансформированного состояния клеток корончатых галлов, были получены при изучении штаммов Agrobacterium, содержащих мутантные Ti-плазмиды. Агробактерии, лишенные Ti-плазмид, не индуцируют в зараженном растении ни образования корончатых галлов, ни синтеза опинов. Все полученные мутации Ti-плазмид разделяют на три основных класса. Мутанты первого класса не индуцируют синтез опинов, но вызывают образование корончатых галлов. Мутанты второго класса утрачивают способность индуцировать развитие опухолей. Мутанты третьего класса стимулируют аномальную дифференцировку нормальных клеток, например избыточный рост корней или побегов. Эти генетические исследования показали, что ДНК Ti-плазмид содержит гены, которые контролируют развитие опухолей, синтез опинов. Поскольку у растений с мутантными Ti-плазмидами второго и третьего классов с помощью фитогормонов можно стимулировать опухолеобразование, было предположено, что полученные мутации затрагивают гормональный метаболизм.

2.4. КАКИЕ ГЕНЫ ЛОКАЛИЗОВАНЫ В Т-ДНК

В области Т-ДНК картировано не менее шести генов, отвечающих за морфологию опухоли и синтез фитогормонов. Ген iaaM 1 кодирует фермент триптофан-2-монооксигеназу, которая переводит триптофан в индолилацетамид. Ген iaaH 2 кодирует гидролазу, превращающую индолилацетамид в гормон растений ауксин - индолил-3-уксусную кислоту (ИУК). Совместная деятельность продуктов генов 1 и 2 обусловливает появление в растениях несвойственного им пути образования природного ауксина, что в целом приводит к изменению количества ауксина в клетках растения. Изопентенилтрансфераза, кодируемая геном ipt, катализирует ранние стадии биосинтеза природного цитокинина. Гены iaaM, iaaH и ipt представляют собой онкогены, так как продуктами этих генов являются фитогормоны ауксин и цитокинин, которые индуцируют деление клеток. Ген 5 отвечает за синтез индол-3-лактата, который является продуктом превращения ауксина. Этот метаболит проявляет антиауксиновый эффект. Ген tml 6 влияет на величину опухоли; транскрипт 6а необходим для секреции нопалина и октопина, а ген 6б изменяет чувствительность растительных тканей к цитокинину и сохраняет клетки в недифференцированном состоянии. Итак, четыре или, возможно, пять генов подавляют дифференцировку опухолевых клеток и переводят их в состояние деления, а еще один ген кодирует фермент, катализирующий синтез опинов.


Случайные файлы

Файл
149954.rtf
118897.rtf
26843.rtf
КД ДЗ 2.docx
161860.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.