Клонирование животных: теория и практика (4532-1)

Посмотреть архив целиком

Клонирование животных: теория и практика

В.А. Струнников

На протяжении многих тысячелетий разведения животных воображение человека, видимо, не раз поражали редко возникающие, исключительные, выдающиеся по хозяйственной ценности, животные - быстроходные лошади, коровы с высокими удоями, овцы с большим настригом шерсти и хорошие куры-несушки. Вероятно, человеку не однажды приходила в голову смелая мысль сделать таких удивительных животных "бессмертными" путем воспроизводства их в следующих поколениях в виде совершенно идентичных копий. В действительности же рекордисты заканчивали свой жизненный путь, оставив после себя потомство, каждый член которого никогда не был полностью идентичен ни одному из своих родителей, точно так же, как и его самого не повторял ни один из потомков следующих поколений.

Воспроизводство организмов, полностью повторяющих уникальную по продуктивности особь, возможно только в том случае, если генетическая информация матери будет без каких-либо изменений передана дочерям. Но при естественном половом размножении этому препятствует мейоз. В ходе его незрелая яйцеклетка, имеющая двойной, или диплоидный, набор хромосом - носителей наследственной информации - делится дважды, и в результате возникают четыре гаплоидные (т.е. с одинарным набором хромосом) клетки. Три из них дегенерируют, а четвертая - с большим запасом питательных веществ - становится собственно яйцеклеткой. У многих животных она в силу гаплоидности не может развиваться в новый организм. Для этого необходимо оплодотворение - слияние ее с гаплоидным сперматозоидом. Вполне понятно, что организм, развившийся из оплодотворенной клетки, приобретает признаки, которые определяются взаимодействием материнской и отцовской наследственности. Следовательно, при половом размножении мать не может быть повторена в потомстве.

Как же, вопреки этой строгой закономерности, заставить клетку развиваться только с материнским диплоидным набором хромосом? Теоретически решение этой трудной биологической проблемы осуществимо двумя способами: хирургическим и "терапевтическим", если использовать медицинскую терминологию.

Клонирование шелкопряда: от первых шагов до практического использования

Хронологически второй метод изобретен намного раньше и, нужно отдать должное, - русскими учеными. Сто лет назад зоолог Московского университета А.А.Тихомиров впервые открыл, что яички тутового шелкопряда в результате различных химических и физических воздействий начинают развиваться без оплодотворения. Однако это развитие, названное партеногенезом, рано останавливалось: партеногенетические эмбрионы погибали еще до вылупления личинок из яиц. Но это уже была прелюдия к клонированию животных.

Б.Л.Астауров в 30-е годы в результате длительных исследований, получивших мировую известность и ставших классическими, подобрал термическое воздействие, которое одновременно активировало неоплодотворенное яйцо к развитию и блокировало стадию мейоза, т.е. превращение диплоидного ядра яйцеклетки в гаплоидное. Развитие с ядром, оставшимся диплоидным, заканчивалось вылуплением личинок, точно повторяющих генотип матери, включая и пол. Так, в результате амейотического партеногенеза были получены первые генетические копии, идентичные матери.

Количество вылупившихся партеногенетических гусениц находилось в прямой зависимости от жизнеспособности матери. Поэтому у "чистых" пород вылупление гусениц не превышало нескольких процентов, в то время как у значительно более жизнеспособных межрасовых гибридов оно достигало 40 - 50%. Несмотря на огромный успех, автор этого метода пережил горькое разочарование: партеногенетическое потомство характеризовалось пониженной жизнеспособностью на эмбриональных и постэмбриональных стадиях развития (гусеницы, куколки, бабочки). Гусеницы развивались неравномерно, среди них было много уродливых, а завитые ими коконы сильно различались по массе. Позже Борис Львович улучшил метод, применив гибридизацию между селекционными линиями. Так он смог повысить жизнеспособность у новых клонов до нормы, но довести до этого уровня другие количественные признаки ему не удалось: например масса партеногенетических коконов не превышала 82% от массы нормальных коконов такого же генотипа.

Позднее мы установили причины партеногенетического угнетения (депрессии) и сложными методами, которые позволяют накапливать "гены партеногенеза", вывели новые высоко жизнеспособные клоны самок, а позже и партеногенетических самцов. (Заметим, что депрессия у тутового шелкопряда несравнимо меньше, чем у млекопитающих животных. У них яйцеклетка с диплоидным ядром, образованным в результате слияния двух женских гаплоидных ядер или двух мужских, вообще не развивается в организм.) Скрещивая таких самцов со своими клонированными "матерями" или склонными к партеногенезу самками других клонов, мы получили потомство с еще большей склонностью к партеногенезу. От лучших в этом отношении самок закладывали новые клоны.

В результате многолетнего отбора нам удалось накопить в генотипе селектируемых клонов невиданно большое число генов, обусловливающих высокие склонность к партеногенезу и жизнеспособность. Вылупление гусениц достигло 90%, а их жизнеспособность, как ни удивительно, повысилась до 95 - 100%, опередив в этом отношении обычные породы и даже гибриды. В дальнейшем мы "скрестили" с помощью партеногенетических самцов два генетически резко отличающихся клона разных рас и от лучших гибридных самок вывели сверхжизнеспособные клоны.

Как ни велико научное значение этих результатов, для практики полученные клоны все же не пригодны. Дело в том, что самки шелкопряда съедают на 20% больше листа шелковицы, а их коконы содержат шелка на 20% меньше. Экономически выгодно было бы промышленное разведение только самцов. А нельзя ли клонировать особей мужского пола? Это важно не только в шелководстве, но и в ряде других отраслей животноводства. Проблема трудная, однако все же в перспективе выполнимая.

Как известно, животный мир разделен на две группы: у одной группы женский пол определяется наличием в генотипе двух одинаковых половых хромосом (ХХ), а мужской - разных (ХY). У другой группы, наоборот, самки имеют хромосомную формулу ХY, а самцы - ХХ. К первой группе относятся человек, сельскохозяйственные животные и ряд других менее высокоорганизованных животных, например знаменитая мушка дрозофила. Ко второй группе принадлежат некоторые виды бабочек, в том числе и тутовый шелкопряд. Совершенно очевидно, что из неоплодотворенных яиц сельскохозяйственных животных никак нельзя "выкроить" самца, поскольку в женском ядре нет Y-хромосомы. Следовательно, клонирование самца может быть произведено только путем пересадки его диплоидного ядра, взятого из пригодной для этой цели ткани тела, в безъядерную яйцеклетку. Вероятно, со временем это будет сделано.

Но мы научились клонировать самцов тутового шелкопряда. Это стало возможно после того, как нам удалось получить уникальных самцов, у которых все парные гены были идентичными, или гомозиготными. Вначале таких самцов клонировали особым мужским партеногенезом (андрогенезом). Для этого воздействием гамма-лучей и высокой температуры лишали ядро яйца способности к оплодотворению. Ядро проникшего в такое яйцо сперматозоида, не встретив дееспособного женского ядра, само, удвоившись, приступало к развитию мужского зародыша, который, естественно, повторял генотип отца. Таким способом мы ведем мужские клоны в десятках поколений. Позже один из таких клонов был преобразован в обоеполую линию, также состоящую из генетически идентичных (за исключенем, конечно, половых хромосом) теперь уже самок и самцов. Поскольку положивший начало этой линии полностью гомозиготный самец возник в результате размножения, приравненного к самооплодотворению, то сам он и линия двойников обоего пола имеют пониженную жизнеспособность. Скрещивая между собой две такие линии, мы стали без труда получать гибридных и, следовательно, высоко жизнеспособных двойников в неограниченных количествах. Это совершенно несопоставимо с трудоемкими методами такого же назначения у других животных - число их двойников пока исчисляется единицами. Полученные нами двойники незаменимы для самых тонких исследований, результаты которых не вуалируются генетическим разнообразием подопытных шелкопрядов, как это происходит с обычным гетерогенным материалом. Эти исследования теперь выполняются с достаточной достоверностью на гораздо меньшем числе шелкопрядов, чем обычно.

Подведем итоги клонирования шелкопряда: полученные клоны самок и самцов для практического шелководства не пригодны. Но это не крах радужных надежд. Такой исход можно было предвидеть. Мы заранее предположили, что целесообразно использовать клоны не непосредственно в шелководческой практике, а на племя - для получения выдающегося по продуктивности потомства при обычном половом размножении. Примерная схема использования клонов в промышленном шелководстве выглядит следующим образом. Из большого количества коконов выбирают те, из которых развиваются выдающиеся по продуктивности самки, и от каждой получают партеногенетическое потомство. Для дальнейшей работы используют партеногенетические клоны, которые повторяют высокую продуктивность матерей и проявляют высокую склонность к партеногенезу. За этим следует скрещивание с определенными клонированными самцами и из полученного гибридного поколения выбирают для производства только те клоны, которые дали прекрасное во всех отношениях потомство. Его высокие качества обусловлены не только предшествующей селекцией, а еще и тем, что в процессе отбора особей на высокую склонность к партеногенезу в их генотипе образуется комплекс генов жизнеспособности, компенсирующий вредное влияние искусственного размножения. При переводе клонов на половое размножение этот комплекс, оказавшись несбалансированным, сильно повышает гетерозис.


Случайные файлы

Файл
43142.rtf
31338.rtf
170024.rtf
174252.rtf
159255.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.