Принцип относительности Эйнштейна (8589)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

БУРЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ





Реферат по физике на тему:


Принцип относительности Эйнштейна



Выполнил: студент 07202 группы Баторов А.П.





















Улан-Удэ 2001


Содержание

Биография Альберта Эйнштейна (1879-1955) 3

Рождение теории относительности. 5

Специальная теория относительности 5

Относительность одновременности событий 5

Преобразования Лоренца 6

Зависимость массы тела от скорости 7

Закон взаимосвязи массы и энергии 11

Значение теории относительности 13

Список использованной литературы: 15

Биография Альберта Эйнштейна (1879-1955)

Выдающийся физик, создатель теории относительности, один из созда­телей квантовой теории и статистической физики.

Родился в Германии, в городе Ульме. С 14 лет вместе с семьей жил в Швейцарии, где в 1900 г. окончил Цюрихский политехникум. В 1902-1909 гг. служил экспертом патентного бюро в Берне. В эти годы Эйнштейн создал спе­циальную теорию относительности, выполнил исследования по статистиче­ской физике, броуновскому движению, теории излучения и др. Работы Эйн­штейна получили известность, и в 1909 г. он был избран профессором Цюрих­ского университета, а затем — Немецкого университета в Праге. В 1914 г. Эйнштейн был приглашен преподавать в Берлинский университет. В период своей жизни в Берлине он завершил создание общей теории относительности, развил квантовую теорию излучения. За открытие законов фотоэффекта и ра­боты в области теоретической физики Эйнштейн получил в 1921 г. Нобелев­скую премию. В 1933 г. после прихода к власти в Германии фашистов Эйн­штейн эмигрировал в США, в Принстон, где он до конца жизни работал в Ин­ституте высших исследований.

В 1905 г. была опубликована специальная теория относительности — механика и электродинамика тел, движущихся со скоростями, близкими к ско­рости света.

Тогда же Эйнштейн открыл закон взаимосвязи массы и энергии (Е=mc2), который лежит в основе всей ядерной энергетики.

Ученый внес большой вклад в развитие квантовой теории. В его теории фотоэффекта свет рассматривается как поток квантов (фотонов). Существова­ние фотонов было подтверждено в 1923 г. в экспериментах американского физика А. Комптона. Эйнштейн установил основной закон фотохимии (закон Эйнштейна), по которому каждый поглощенный квант света вызывает одну элементарную фотохимическую реакцию. В 1916 г. он теоретически предсказал явление индуцированного (вынужденного) излучения атомов, лежащее в основе квантовой электроники.

Вершиной научного творчества Эйнштейна стала общая теория относительности, завершенная им к 1916 г. Идеи Эйнштейна изменили господствовавшие в физике со времен Ньютона механистические взгляды на пространство, время и тяготение и привели к новой материалистической картине мира.

Ученый работал и над созданием единой теории поля, объединяющей гравитационные и электромагнитные взаимодействия. Научные труды Эйнштейна сыграли большую роль в развитии современной физики - квантовой электродинамики, атомной и ядерной физики, физики элементарных частиц, космологии, астрофизики.

А. Эйнштейн был членом многих академий мира и научных обществ. В 1926 г. его избрали почетным членом Академии наук СССР.

Рождение теории относительности.

В 1907-1916 гг. создана общая теория относительности, которая объединяет современное учение о пространстве и времени с теорией тяготения. По масштабу переворота, совершенного Эйнштейном в физике, его часто сравнивают с Ньютоном.

В большинстве задач динамики, имеющих приложение к техническим проблемам, основную систему координат можно связывать с Землей, считая ее неподвижной. Однако для астрономических задач и задач космических полетов принятие такой инерциальной системы отсчета будет уже неверным, так как Земля вращается вокруг своей оси и движется вокруг Солнца. Для наблюдений за движением планет и космических кораблей в качестве основной системы можно принять систему, связанную с неподвижными звездами. С усовершенствованием методов теоретических и экспериментальных исследований система координат, связанная с неподвижными звездами, также оказалась недостаточной для согласования опытных фактов с результатами вычислений. Это было выяснено Эйнштейном. Созданная им специальная теория относительности показала, что законы Ньютона не вполне точны и при больших скоростях движения, сравнимых со скоростью света, являются только первым приближением для описания наблюдаемых движений. При скоростях же, значительно меньших скорости света, все расчеты, вытекающие из законов Ньютона, в предположении, что основная система координат связана с неподвижными звездами, достаточно просты и удовлетворяют самым строгим требованиям точности.


Специальная теория относительности

В своей работе «К электродинамике движущихся тел», опубликованной в 1905г., Эйнштейн сформулировал более точную теорию механики быстродвижущихся тел - специальную теорию относительности.

В классической механике считалось, что если мы знаем декартовы координаты x, y и время t события в некоторой неподвижной (приближенно) системе координат, то можем легко вычислить координаты, и время в инерциальной системе (,), движущейся относительно неподвижной системы поступательно, прямолинейно и равномерно. В самом деле, если начало системы (, ) в момент t = 0 имело координаты =0 , = 0 и система (, ) движется вдоль оси ОХ со скоростью, то в момент t координаты точки , будут относительно системы (x, y) следующими:

х = + t,

y =

При этом число интуитивно предполагалось: время t в системе(x, y) течет так же, как и в системе (, ), т.е. t = ; таким образом, допускалось, что течение времени не зависит от состояния движения тела. Длина масштабной линейки абсолютна, и если в покоящейся системе (x, y) некоторый отрезок имеет длину , то будет иметь ту же длину и в движущейся системе(, ), иначе говоря =. В классической механике течение времени и пространственные интервалы считались независимыми друг от друга и не зависели от состояния движения системы (тела) отсчета.

В конце XIX в. накопилось достаточно большое число фактов (главным образом экспериментальных), относящихся к движению частиц со скоростями, сравнимыми со скоростью света, которые не могли быть объяснены исходя из законов классической механики.

Оказалось, что при скоростях порядка скорости света пространственные соотношения (длины отрезков) и течение времени зависят от скорости движения системы(, ).

В основе теории относительности лежит факт, полученный опытным путем: независимость скорости света от скорости источника. Одно из главных положений теории относительности заключено в том, что в природе не существует скорости, большей скорости света в вакууме. Это самая большая, или предельная, скорость.

Другое важнейшее следствие теории относительности - связь между массой и энергией. Эйнштейн установил, исходя из основных положений теории относительности, что энергия содержится в скрытой форме в любом веществе, причем в массе m заключена энергия E, равная произведению массы на квадрат скорости света. Эта формула помогает понять многие процессы.

Исходными для построения теории относительности являются два закона природы, получившие подтверждение в самых различных явлениях движения. Эти законы были сформулированы Эйнштейном в следующем виде:

  1. «Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, находящихся относительно друг друга в равномерном поступательном движении, эти изменения состояния относятся».

  2. «Каждый луч света движется в «покоящейся» системе координат с определенной скоростью, независимо от того, испускается этот луч света покоящимся или движущимся телом».

Первый закон распространяет закон эквивалентности инерциальных систем(закон относительности классической механики Галилея - Ньютон) на широкий класс физических явлений. Второй закон устанавливает постоянство скорости света независимо от скорости движения источника света.

Второй закон кажется наиболее парадоксальным. В самом деле, при изучении движения тел со скоростями, малыми по сравнению со скоростью света, мы убеждаемся и теоретически, и экспериментально, что скорость тела относительно неподвижной системы координат зависит от движения «платформы», с которой бросание тела производится. Так мяч, брошенный в направлении движения поезда, будет иметь по отношению к Земле большую скорость, нежели мяч, брошенный с неподвижного поезда. Для случая прямолинейного движения результирующая скорость будет равна алгебраической сумме слагаемых скоростей. При движении платформы и тела в одну сторону результирующая скорость будет равна арифметической сумме скоростей и будет подсчитываться по формуле:

рез. = ,

где v рез. Есть результирующая скорость тела по отношению к Земле, - скорость платформы, - скорость тела по отношению к платформе.

Закон сложения скоростей в теории Эйнштейна записывается иначе:

Из этого уравнения следует, что результирующая скорость всегда меньше скорости света. Даже в предельном случае, когда

= с, = с,

Существенные изменения претерпевают и другие понятия механики. Масса тела в задачах специальной теории относительности зависит от скорости движения тела:


Случайные файлы

Файл
13247-1.rtf
160138.rtf
Danilo.doc
82095.rtf
48955.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.