Разрушения зданий при аварийных взрывах бытового газа (4212)

Посмотреть архив целиком

Разрушения зданий при аварийных взрывах бытового газа

проф., д.т.н А.А.Комаров.

Московский Государственный Строительный Университет.

Для уменьшения последствий аварийных взрывов внутри газифицированных жилых зданий необходимо определить основные факторы, определяющие их устойчивость при воздействии взрывных нагрузок.

Обусловлено это тем, что, как показывает анализ последствий аварийных взрывов, наибольшее количество травм и человеческих жертв вызвано именно обрушением строительных конструкций.

Очевидно, что здание будет устойчивым при условии, что взрывные нагрузки будут меньше допустимых. При превышении уровня взрывной нагрузки над реальной несущей способностью здания (помещения) происходит его полное или частичное обрушение. Поэтому обеспечить устойчивость здания можно двумя путями: снижением взрывных нагрузок до допустимого для данного здания уровня или усилением основных строительных конструкций, т.е. увеличением несущей способности здания.

Для выработки рекомендаций по снижению взрывных нагрузок до безопасного уровня необходимо рассмотреть физические аспекты развития взрывной аварии и математические модели, адекватно описывающие динамику формирования взрывной нагрузки.

Во-первых, необходимо отметить, что аварийные взрывы внутри зданий и помещений характеризуются не детонационным, а дефлаграционным типом взрывного превращения, что накладывает определенные особенности на способы прогнозирования взрывных нагрузок и на методы уменьшения последствий аварийных взрывов.

Дефлаграционный взрыв - это быстрое горение (быстрый пожар) газовоздушной смеси, концентрация горючего в которой находится между нижним и верхним концентрационными пределами воспламенения, т.е. смеси, подготовленной к горению. На рис.1 приведены зависимости скорости нормального горения от концентрации горючего в смеси. Приведены данные по пропану и метану, т.к. в бытовых целях используются именно эти вещества.

Рис.1 Зависимости скорости нормального горения от концентрации горючего в смеси.

Из рис.1 следует, что максимальное значение скорости нормального горения Uн наблюдается при определенном процентном содержании горючего газа в смеси. При горении продукты взрыва расширяются в  раз. Пламя движется со скоростью Uн относительно продуктов взрыва. Поэтому видимая скорость пламени представляет собой сумму скоростей расширения смеси и скорости нормального горения. В начальные моменты взрыва видимая скорость пламени равна Uн. Для пропано- и метановоздушных смесей начальная скорость пламени составляет около 3м/с. Т.к. скорость распространения пламени существенно меньше скорости звука, при дефлаграционном взрыве реализуется принцип квазистатичности избыточного давления, который заключается в независимости взрывной нагрузки от пространственной координаты. Другими словами, давление, действующее в данный момент времени на любой конструктивный элемент ограждения (стены, потолок, пол, окна, двери и т.д.), одинаково во всех точках помещения.

Избыточное давление при внутреннем дефлаграционном взрыве в замкнутом объёме достигает 700...900кПа. При взрывах внутри зданий и сооружений, избыточное давление не должно превышать значений, превышающих несущую способность строительных конструкций. Максимальное давление, которое способны выдержать здания и сооружения, достаточно мало. Например, для кирпичных стен оно составляет 2-4кПа, а для бетонных типовых перекрытый избыточное давление взрыва не должно превышать значений 8-10кПа. Малость избыточного давления по сравнению с атмосферным давлением обуславливает доминирующую роль газодинамических потоков, сопровождающих взрыв, на формирование области взрывного горения, на развитие аварийного взрыва и уровни избыточного давления. Для снижения избыточного давления до безопасного уровня в помещениях используют предохранительные конструкции (ПК): остекленные оконные проёмы или легкосбрасываемые конструкции (ЛСК).

При подходе пламени к сбросному проему происходит резкое изменение плотности истекающих газов. Это приводит к появлению во временной зависимости давления первого максимума. Второй пик давления соответствует максимальной площади фронта пламени при установившемся процессе истечения через сбросные проемы продуктов сгорания. На рис.2 приведена типичная осциллограмма взрывного давления.

Рис.2. Типичная осциллограмма избыточного давления при дефлаграционном взрыве в кубическом объеме.

Следует отметить, что видимая скорость пламени замедляется в сторону стен без сбросных проемов и увеличивается в сторону стен со сбросными проемами. Изменение скорости пламени связано с влиянием границ (стен), на которых выполняется условие не протекания, т.е. скорость свежей смеси (ветра) на жестких стенках равна нулю.

Величина избыточного давления для любого момента времени определяется темпом роста давления, вызванного выделением продуктов сгорания на фронте пламени, и темпом снижения давления, вследствие истечения газа (свежей смеси или продуктов сгорания) через открытый проём.

Если сбросной проём остеклен, то он в процессе взрывного горения вскрывается. В этот момент возникает локальный по времени максимум давления, затем наблюдается спад, после чего давление начинает расти, пока не выгорит вся газовоздушная смесь (ГВС). Величина максимального давления в зданиях с глухим остеклением зависит от давления начала разрушения остекления (рис.3), которое зависит от размеров единичной ячейки стекла и его толщины.

Рис.3. Взрывное давление в помещении с остекленными окнами.

При использовании в качестве ПК легкосбрасываемых конструкций (ЛСК) величина максимального давления в основном зависит от характерных размеров помещения и инерционности ЛСК (рис.4).

Рис.4. Влияние инерционности ЛСК на уровни взрывных нагрузок.

Вследствие истечения не прореагировавшей смеси через открытый или вскрывшийся проём только часть первоначально имевшейся смеси успевает прореагировать при внутреннем дефлаграционном взрыве. Остальная часть смеси выбрасывается через проём в атмосферу. Поэтому при частичной загазованности помещения (свыше 15-20%) взрывные нагрузки близки к нагрузкам, которые реализуются в полностью загазованных помещениях.

Большую опасность представляет случай, когда загазованное помещение соединяется через проём с другим даже незагазованным помещением. В этом случае происходит двухстадийный взрыв. Максимальное давление в смежных помещениях может быть в несколько раз больше, чем при взрыве в одном изолированном помещении с проёмами наружу (рис.5).

Рис.5. Фотография взрыва пропановоздушной смеси в смежных камерах.

На динамические характеристики внутреннего дефлаграционного взрыва большое влияние оказывает турбулизация свежей смеси, приводящая к увеличению нормальной скорости горения и резкому увеличению видимой скорости пламени. Интенсификация процесса горения при расчетах обычно учитывается введением коэффициента интенсификации .

Интенсификация процесса горения при взаимодействии пламени с различного рода препятствиями иллюстрирует (рис.6).

Рис.6. Влияние препятствий, расположенных на пути пламени, на взрывные нагрузки.

Происходит резкое увеличение притока продуктов взрыва, т.к. увеличивается не только общая площадь горения, но и происходит существенная турбулизация смеси в следе за телом. Следствием значительного увеличения притока продуктов взрыва является рост взрывного давления.

Рассмотрим математические модели и уравнения, описывающие избыточное давление при внутренних дефлаграционных взрывах

При математическом описании процесса взрывного горения в промышленных и гражданских зданиях необходимо исходить из того, что допустимые уровни взрывных нагрузок внутри зданий не должны превышать Pдоп=10-15кПа. При давлениях, больших Pдоп, основные строительные конструкции большинства зданий разрушаются.

Невысокие уровни избыточного давления позволяют внести в математическую модель ряд упрощений. Во-первых, можно считать, что скорость нормального горения, степень расширения продуктов сгорания и плотность свежей смеси являются величинами постоянными. Во-вторых, использовать принцип квазистатичности избыточного давления, когда давление является функцией только координат и не зависит от времени, т.е. время выравнивания давления существенно превышает время изменения параметров системы.

Динамика изменения давления (нагрузок) в этом случае может быть описана соотношением:

(1)

P(t) - текущее значение давления; P - избыточное давление; S(t) - текущее значение площади поверхности фронта пламени; S пр - суммарная площадь сбросных проемов; i - плотность холодной газовоздушной смеси (1) или продуктов сгорания (2);  - степень расширения смеси при сгорании,  =1/2; i - показатель адиабаты свежей смеси (1) или продуктов взрыва (2); Uн – нормальная скорость распространения пламени; Vj - текущий объем свежей смеси (V1) или продуктов взрыва (V2); f(t,P) - функциональная зависимость вскрытия предохранительных конструкций (стекол в оконных проемах, ЛСК и т.д.);  - коэффициент интенсификации процесса горения;  - коэффициент расхода, истекающих через сбросной проем газов.

Из (1) следует, что параметры, от которых зависит темп нарастания давления (кроме параметров, характеризующих горючую смесь Uн и ) являются: площадь фронта пламени, объем помещения, плотность истекающих через сбросные проемы газов и площадь сбросных проемов.


Случайные файлы

Файл
76116-1.rtf
10574.rtf
34034.rtf
Lek_rast.doc
49386.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.