Выбор и расчет средств по пылегазоочистке воздуха (PZ45)

Посмотреть архив целиком

Практическое задание №4,5

Выбор и расчет средств по пылегазоочистке воздуха

Вариант №16


1. Подобрать циклон, обеспечивающий степень эффективности очистки газа от пыли не менее = 0.87


Циклоны предназначены для сухой очистки газов от пыли со средним размером частиц 10…20 мкм. Все практические задачи по очистке газов от пыли с успехом решаются циклонами НИИОГАЗа: цилиндрическим серии ЦН и коническим серии СК. Избыточное давление газов, поступающих в циклон, не должно превышать 2500 Па. Температура газов во избежание конденсации паров жидкости выбирается на 30…500С выше температуры точки росы, а по условиям прочности конструкции – не выше 4000С. Производительность циклона зависит от его диаметра, увеличиваясь с ростом последнего. Цилиндрические циклоны серии ЦН предназначены для улавливания сухой пыли аспирационных систем. Их рекомендуется использовать для предварительной очистки газов при начальной запыленности до 400 г/м3 и устанавливать перед фильтрами и электрофильтрами.

Конические циклоны серии СК, предназначенные для очистки газов от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН за счет большего гидравлического сопротивления. Входная концентрация сажи не должна превышать 50 г/м3.


Исходные данные:

количество очищаемого газа - Q = 1.4 м3/с;

плотность газа при рабочих условиях - = 0,89 кг/м3;

вязкость газа - = 22,210-6 Нс/м2;

плотность частиц пыли - П = 1750 кг/м3;

плотность пыли – dП = 25 мкм;

дисперсность пыли - lgп = 0,6;

входная концентрация пыли – Свх = 80 г/м3.


Расчет: Задаёмся типом циклона и определяем оптимальную скорость газа опт, в сечении циклона диаметром Д:

Выберем циклон ЦН-15, оптимальная скорость газа, в котором опт = 3,5 м/с.

Определяем диаметр циклона, м

Ближайшим стандартным сечением является сечение в 700 мм.


По выбранному диаметру находим действительную скорость газа в циклоне, м/с

м/с,

где n – число циклонов.

Вычисляем коэффициент гидравлического сопротивления одиночного циклона:

где К1 – поправочный коэффициент на диаметр циклона;

К2 - поправочный коэффициент на запыленность газа;

500 – коэффициент гидравлического сопротивления одиночного циклона диаметром 500 мм.


Определяем гидравлическое сопротивление циклона:

Па


По таблице 2.4 определяем значение параметров пыли и lg:

Для выбранного типа циклона - =4.5 мкм lg=0.352

Ввиду того, что значения , приведенные в таблице 2.4, определены по условиям работы типового циклона (Дт = 0,6 м; пт = 1930 кг/м3; т = 22,210-6; т = 3,5 м/с), необходимо учесть влияние отклонений условий работы от типовых на величину d50:

мкм

Рассчитываем параметр x:


по табл. 2.5 находим значение параметра Ф(x):

Ф(x)=0.8413


Определяем степень эффективности очистки газа в циклоне:



Расчетное значение = 0,92 больше необходимого условия = 0,87, таким образом циклон выбран верно.




Р
ис. 4.1 Цилиндрический циклон


1 – корпус

2 – входная труба

3 – патрубок

4 – буннер





2. Рассчитать эффективность применения скруббера Вентури для очистки от пыли производственных выбросов.


Скрубберы Вентури нашли наибольшее применение среди аппаратов мокрой очистки газов с осаждением частиц пыли на поверхности капель жидкости. Они обеспечивают эффективность очистки 0.96…0.98 на пылях со средним размером частиц 1…2 мкм при начальной концентрации пыли до 100 г/м3 . Удельный расход воды на орошение при этом составляет 0.4…0.6 л/м3 .


Исходные данные:

Загрязнитель – конвекторная пыль В = 9,88 10-2; n = 0,4663

Плотность газа в горловине г = 0,9 кг/м3

Скорость газа в горловине Wг = 135 м/с

Массовый расход газа Мг = 0,9 кг/с

Массовый расход орошающей жидкости Мж = 0,865 кг/с

Удельный расход жидкости m = 1,5 л/м3

Давление жидкости ж = 300 кПа

Плотность жидкости ж = 1000 кг/м3

Коэффициент гидравлического сопротивления сухой трубы - =0.15

Требуемая эффективность очистки от пыли не менее 0.9


Расчет:

Определяем гидравлическое сопротивление сухой трубы Вентури,


Рассчитываем гидравлическое сопротивление, обусловленное введением орошающей жидкости,


Н/ м2 , где


ж – коэффициент гидравлического сопротивления трубы, обусловленный вводом жидкости




Находим гидравлическое сопротивление трубы Вентури, Н/ м2




Находим суммарную энергию сопротивления Кт, Па

г
де
Vж и Vг объемные расходы жидкости и газа соответственно, м3

Vж = Мж/ж = 0,865/1000 = 8,65 10-4 м3

Vг = Мг/г = 0,9/0,9 = 1 м3

Кт = 10662855 + 300103(8,6510-4/1) = 10663114 Па

Определяем эффективность скруббера Вентури



Э
ффективность скруббера Вентури, полученная в результате расчетов (величина ), удовлетворяет заданному условию,
т.е. обеспечивает очистку газов от пыли с эффективностью не менее 0.9.


Рис. 2.1 Скруббер Вентури

1 – форсунки

2 – сопло

3 – пылеуловитель

1 = 28;

2 = 8; l2 = 0.15 d2;



3. Определить размеры, энергозатраты и время защитного действия адсорбера для улавливания паров этилового спирта, удаляемых местным отсосом от установки обезжиривания при условии непрерывной работы в течение 8 часов.


Метод адсорбции основан на физических свойствах некоторых твердых тел с ультрамикроскопической структурой селективно извлекать и концентрировать на своей поверхности отдельные компоненты из газовой среды. При расчете определяют необходимое количество сорбента, продолжительность процесса поглощения, размеры адсорбционной аппаратуры и энергетические затраты.


Исходные данные:


Производительность местного отсоса - Lм=250 м3

Начальная концентрация спирта - Со=11 г/м3

Температура в адсорбере - tр=20 оС

Давление в адсорбере - Р=9.8*104 Н/м2

Плотность паровоздушной смеси - г=1.2 кг/м3

Вязкость паровоздушной смеси - =0.15*10-4 м2

Диаметр гранул поглотителя (активированный уголь) - d=3 мм

Длина гранул - l=5мм

Насыпная плотность - н=500 кг/м3

Кажущаяся плотность - к=800 кг/м3

Эффективность процесса очистки = 0,99


По изотерме адсорбции (рис. 3.1) и заданной величине Со, г/м3, находим статическую емкость сорбента: 0=175 г/кг

Определяем весовое количество очищаемого газа:

кг/с

Переводим весовую статическую емкость сорбента 0, в объемную 0:

кг/м3

Определяем массу сорбента:

, кг,

где К=1.1…1.2 – коэф. запаса;

- продолжительность процесса сорбции, с.


Выбираем скорость потока газа в адсорбере W, м/с. Обычно фиктивная скорость паровоздушной смеси или скорость, рассчитанная на полное сечение слоя, выбирается в пределах 0.1…0.25 м/с. Выберем W=0.2 м/с.

6. Определяем геометрические размеры адсорбера. Для цилиндрического аппарата:


- диаметр м


  • длина (высота) слоя адсорбента

м

Находим пористость сорбента

Рассчитываем эквивалентный диаметр зерна сорбента:

м


9. Коэффициент трения находим в зависимости от характера движения

при Re<50 =220/Re

при Re50 =11.6/Re0.25,

где - критерий Рейнольдса

откуда: =220/Re=220/49 =4.5


Определяем гидравлическое сопротивление, оказываемое слоем зернистого поглотителя при прохождении через него потока очищаемого газа

, где Ф=0.9 – коэффициент формы


Определяем коэффициент молекулярной диффузии паров этилового спирта в воздухе при заданных условиях: Д0 = 0,101 10-4 при Т0 = 273 К и Р0 = 9,8 104 Па:


Находим диффузионный критерий Прантля


Для заданного режима течения газа (определяется значением Rе) вычисляем величину коэффициента массопередачи для единичной удельной поверхности, м/с


при Rе<30

при Rе>30

т.к. в нашем случае Re=49, то


По изотерме адсорбции (рис 2.1) находим:

- количество вещества, максимально сорбируемое поглотителем при данной температуре а=175 г/кг

- величину концентрации поглощаемого вещества на входе в адсорбер Сх= 2,5 г/м3


Рассчитываем удельную поверхность адсорбента:


м23


Определяем концентрацию паров этилового спирта на выходе из аппарата:

, где - эффективность очистки


Находим продолжительность защитного действия адсорбера:


Полученные в результате расчета параметры обеспечивают заданный режим работы адсорбера в течении более чем 8 часов. В целях экономии адсорбента можно уменьшить высоту его слоя.







Р
ис. 3.1. Адсорбер вертикальный


  1. труба для ввода газа

  2. слой пористого сорбента

  3. труба для удаления чистого газа

  4. барбатер

5. труба для выхода пара










Список использованных источников

  1. Безопасность жизнедеятельности: Уч. пособие под ред. Бережного С.А. и др. – Тверь: ТГТУ, 1996.

  2. Бережной С.А., Седов Ю.С. Сборник типовых расчетов и заданий по экологии: Уч. пособие. - Тверь: ТГТУ, 1999.








Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.