Эконометрический анализ влияния экономических показателей на численность пользователей Интернета (183804)

Посмотреть архив целиком

Государственный университет

Высшая школа экономики

Нижегородский филиал






Эссе по эконометрике


Тема: «Эконометрический анализ влияния экономических показателей на численность пользователей Интернета»
















Нижний Новгород

2008 г.


В наше время Интернет получил большое распространение. Пользователями Интернета в более развитых странах являются почти все слои населения, в менее экономически успешных государствах люди никогда не слышали о компьютерах и Интернете. Цель данной работы – показать зависимость численности пользователей Интернет в конкретной стране от экономических показателей, таких как ВВП на душу населения, национальный доход на душу населения, количество пользовательских компьютеров, а также степень урбанизации населения. Казалось бы, связь ясна: чем больше ВВП и НД, тем больше компьютеров в стране и соответственно больше пользователей всемирной паутины; чем больше городского населения относительно сельского, тем оно образованней и «продвинутей». Однако на практике это оказывается не совсем так. Ряд африканских стран вообще живет по племенным законам.

В этой работе я попытаюсь доказать существование прямой взаимосвязи между численностью пользователей Интернет и ВВП, НД и др. Попытаюсь доказать, что именно эти факторы влияют на количество пользователей ПК и Интернете в большей степени, попробую объяснить полученные результаты теоретически и подведу итог исследованию, сделав собственные выводы на основе проведенных исследований.

Сбор данных осуществлялся при использовании сайта www.geohive.com GeoHive: Global Statistics. В работу включена информация о выборке из 172 стран нашей планеты. Чтобы сделать моё исследование наиболее эффективным, я постараюсь следовать плану:

  1. определить зависимую переменную и выбор регрессоров

  2. построить регрессию (модель)

  3. протестировать модель, оценить её «качество»

  4. проанализировать результаты

  5. сделать собственные выводы


В качестве метода исследования я использую эконометрический анализ, который буду осуществлять с помощью эконометрического пакета EViews 3.1, разработанного специально для этих целей.

Для описания зависимости я выбрала 6 переменных:

  1. intusers – количество пользователей Интернет в стране

  2. pc – численность пользовательских компьютеров в стране

  3. gdp – Gross Domestic Product – ВВП на душу населения

  4. gni – Gross National Income – НД на душу населения

  5. urban – численность городского населения

  6. rural - численность сельского населения


Выбрав 172 страны, я занесла данные в EViews и настало время для анализа данных. В первую очередь проверяем данные на ошибки.

ВВП на душу населения: нет отрицательных величин, но колеблется переменная значительно. Объяснить это легко, так как в выборке присутствуют как беднейшие страны, так и богатейшие.

Остальные переменные также необходимо смотреть на наличие ошибок, однако чтобы не загромождать эссе, графики я приводить не буду.

Далее смотрим взаимную корреляцию переменных:



URBAN

GDP

GNI

INTUSERS

PC

RURAL








URBAN

1.000000

0.056682

0.089996

0.736664

0.557379

0.873801

GDP

0.056682

1.000000

0.780379

0.302719

0.331656

-0.068260

GNI

0.089996

0.780379

1.000000

0.400436

0.438161

-0.060708

INTUSERS

0.736664

0.302719

0.400436

1.000000

0.964982

0.426228

PC

0.557379

0.331656

0.438161

0.964982

1.000000

0.211864

RURAL

0.873801

-0.068260

-0.060708

0.426228

0.211864

1.000000

Видим, что на численность пользователей Интернет огромное влияние оказывает число компьютеров в стране. Кроме того, немаловажное значение имеет численность урбанизированного населения.

Численность городского населения сильно зависит от национального дохода на душу населения.

Количество компьютеров в стране также связано с числом пользователей Интернет и степенью урбанизации населения.

А на число сельского населения оказывают влияние ВВП и НД в обратной зависимости, т.е. чем меньше ВВП и НД, тем больше населения занимается ручным трудом и сельским хозяйством. Это является показателем отсталости экономики и подтверждает правильность строящейся регрессии.


Строим регрессию, в которую включаем переменные из теоретической модели:


Ls intusers c pc gdp gni urban rural


Dependent Variable: INTUSERS

Method: Least Squares

Date: 02/27/08 Time: 02:03

Sample(adjusted): 4 172

Included observations: 132

Excluded observations: 37 after adjusting endpoints

Variable

Coefficient

Std. Error

t-Statistic

Prob.

C

-346430.8

250802.2

-1.381291

0.1696

GDP

10.32608

22.95037

0.449931

0.6535

GNI

502.9395

345.3779

1.456201

0.1478

PC

0.719045

0.014848

48.42816

0.0000

URBAN

0.090404

0.010513

8.598902

0.0000

RURAL

0.005584

0.005304

1.052842

0.2944

R-squared

0.989265

Mean dependent var

5812423.

Adjusted R-squared

0.988838

S.D. dependent var

19682933

S.E. of regression

2079463.

Akaike info criterion

31.97751

Sum squared resid

5.45E+14

Schwarz criterion

32.10854

Log likelihood

-2104.515

F-statistic

2322.154

Durbin-Watson stat

2.087052

Prob(F-statistic)

0.000000


Видим, что незначительной переменной является ВВП, поэтому уберем его из регрессии. Все коэффициенты получились с ожидаемыми знаками, кроме величины сельского населения. Предполагалось, что это отрицательный фактор. Но так как его величина очень близка к 0, не будем обращать на это несовпадение внимания. К тому же его влияние незначительно.

Строим новую регрессию:


Dependent Variable: INTUSERS

Method: Least Squares

Date: 02/27/08 Time: 02:09

Sample(adjusted): 4 172

Included observations: 132

Excluded observations: 37 after adjusting endpoints

Variable

Coefficient

Std. Error

t-Statistic

Prob.

C

-354918.2

249305.2

-1.423629

0.1570

GNI

618.1578

231.0229

2.675742

0.0084

PC

0.718812

0.014792

48.59489

0.0000

URBAN

0.090582

0.010473

8.649087

0.0000

RURAL

0.005475

0.005282

1.036557

0.3019

R-squared

0.989247

Mean dependent var

5812423.

Adjusted R-squared

0.988909

S.D. dependent var

19682933

S.E. of regression

2072923.

Akaike info criterion

31.96396

Sum squared resid

5.46E+14

Schwarz criterion

32.07316

Log likelihood

-2104.621

F-statistic

2920.986

Durbin-Watson stat

2.087552

Prob(F-statistic)

0.000000


Случайные файлы

Файл
125639.rtf
162632.rtf
29730.rtf
162.rtf
95184.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.