Доказательство теоремы Ферма для n=4 (85593)

Посмотреть архив целиком


Доказательство великой теоремы Ферма для показателя степени n=4


Великая теорема Ферма формулируется следующим образом: диофантово уравнение:


Аn+ Вn = Сn (1)


где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение (1) запишем следующим образом:


Аn = Сn - Вn (2)


Пусть показатель степени n=4. Тогда уравнение (2) запишется следующим образом:


А4 = С44 (3)


Уравнение (3) запишем в следующем виде:


А4 = (С2) 2 - (В2) 2 = (С22) ∙ (С22) (4)

Пусть: (С22) = N4 (5)


Уравнение (5) рассматриваем как параметрическое уравнение 4 - ой степени с параметром N и переменными B и С. Преобразуем уравнение (5):


N4 = (С -В) · (С +В) (6)


Для доказательства используем метод замены переменных. Обозначим:

C-B=M (7)


Из уравнения (7) имеем:


C=B+M (8)


Из уравнений (6), (7) и (8) имеем:


N4=M∙ (B+M+B) =M∙ (2B+M) = 2BM+M2 (9)


Из уравнения (9) имеем:


N4 - M2= 2BM (10)


Отсюда:


B = (11)


Из уравнений (8) и (11) имеем:


C= (12)


Из уравнений (11) и (12) следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа N4 на число M, т.е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа N4.

Из уравнений (11) и (12) также следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел N и M: оба числа должны быть четными или оба нечетными.

Из уравнений (11) и (12) также следует:


С22= (13)


Обозначим:


С22 = K (14)


Пусть:


N=P∙S; M=S2


Тогда:


K = С22 = (15)


Из уравнений (4), (5) и (15) следует:


A4 = N4K=N4· S4 (16)


Отсюда следует:


A = N· S (17)

Очевидно, что:


- дробное число.


То есть:


С2 + В2R4; A4N4R4


Следовательно, в соответствии с формулой (17) число А - дробное число.

Другими словами, определенные по формулам (11) и (12) значения чисел B и С удовлетворяют только уравнению (5) и не удовлетворяют предполагаемому равенству:


С2 + В2 = R4


Таким образом, великая теорема Ферма не имеет решения в целых положительных числах для показателя степени n=4.



Случайные файлы

Файл
116727.doc
656.doc
72310-1.rtf
716-1.rtf
30296-1.rtf