Высшая математика, интегралы (шпаргалка) (integral)

Посмотреть архив целиком

Равномерная непрерывность

Определение 28.7: Функция называется равномерно непрерывной на множестве , если: . (в отличие от критерия Коши: ).
Пояснение: Пусть: . Тогда: Т.е. функция не является равномерно непрерывной на множестве .

Теорема 28.3: Непрерывная на отрезке функция – равномерно непрерывна на нём.

 Классы интегрируемых функций

Теорема 28.4: Непрерывная на отрезке функция – интегрируема на нём.

Теорема 28.5: Монотонная на отрезке функция – интегрируема на нём.

Теорема 28.5: Если функция определена и ограничена на отрезке , и если можно указать конечное число интервалов, покрывающих все точки разрыва этой функции на . Причём общая длина этих интервалов меньше . То - интегрируема на .
Замечание: Очевидно, что если - интегрируема на , а отличается от только в конечном числе точек, то - интегрируема на и .

 

Существование первообразной

Определение 28.9: Пусть - интегрируема на , , тогда: функция интегрируема на и функция называется интегралом с переменным верхним пределом, аналогично функция - интеграл с переменным нижним пределом.

Теорема 28.6: Если функция - непрерывна на , то у неё существует на первообразная, одна из которых равна: , где .
Замечание 1: Из дифференцируемости функции следует её непрерывность, т.е.
Замечание 2: Поскольку - одна из первообразных , то по определению неопределённого интеграла и теореме о разности первообразных: . Это связь между определённым и неопределённым интегралами

Интегрирование подстановкой

Пусть для вычисления интеграла от непрерывной функции сделана подстановка .

Теорема. Если 1. Функция и ее производная непрерывны при

2. множеством значений функции при является отрезок [a;b]

3. , то =.

Док-во: Пусть F(x) есть первообразная для f(x) на отрезке [a;b]. Тогда по формуле Ньютона-Лейбница =. Т.к. , то является первообразной для функции , . Поэтому по формуле Ньютона-Лейбница имеем

=.

Формула замены переменной в определенном интеграле.

  1. при вычислении опред. интег-ла методом подстановки возвращаться к старой переменной не требуется;

  2. часто вместо подстановки применяют подстановку t=g(x)

  3. не следует забывать менять пределы интегрирования при замене переменных.


Интегрирование заменой переменной.

а). Метод подведения под знак дифференциала

Пусть требуется вычислить интеграл . Предположим, что существуют дифференцируемая функция и функция такие, что подынтегральное выражение может быть записано в виде:

.

Тогда: . Т.е. вычисление интеграла сводится к вычислению интеграла (который может оказаться проще) и последующей подстановке .

Пример: Вычислить .

.

Подстановка: .

б). Метод подстановки

Пусть требуется вычислить интеграл , где . Введём новую переменную формулой: , где функция дифференцируема на и имеет обратную , т.е. отображение на - взаимно-однозначное. Получим: . Тогда . Т.е. вычисление интеграла сводится к вычислению интеграла (который может оказаться проще) и последующей подстановке .

Пример: Вычислить .

, откуда: .

Интегрирование по частям. Пусть - дифференцируемые функции, тогда справедлива формула: , или короче: . Эта формула используется в тех случаях, когда подынтегральное выражение можно так представить в виде , что интеграл вычисляется проще исходного.

Пример: Вычислить .

Положим . Тогда . В качестве выберем первообразную при . Получим . Снова . Тогда . Окончательно получим: .
Замечание 26.5: Иногда при вычислении интеграла методом интегрирования по частям получается зависимость: . Откуда можно получить выражение для первообразной: .

Интегрирование рациональных функций

Постановка задачи:

1).

2).

3).

т.е. все задачи сводятся к задаче B.2).

Теорема 1: Пусть , тогда, если: , где , то Из этой теоремы следует, что для интегрирования любой рациональной функции необходимо уметь интегрировать следующие функции:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. .

Интегрирования дробно-линейных и квадратичных иррациональностей

Сделав подстановку: , получим: .

тогда

a). Подстановки Эйлера.

1). Корни многочлена - комплексные, сделав подстановку: , получим: .

2). Корни многочлена - действительные: . Подстановка: , получаем: .

b). Подстановка: , далее, если:

1). подстановка -

2). подстановка -

3). подстановка -

c).

Если подстановка -


Интегрирование функций, рационально зависящих от тригонометрических

Универсальная подстановка: , тогда:

подстановка:

или - нечётные: вносим функцию при нечётной степени под знак дифференциала

Интегрируется по частям







Неопределенный интеграл

Определение 26.1: Функция называется первообразной для функции на , если: .

Пусть и - первообразные функции на . Тогда:   .

Определение 26.2: Неопределённым интегралом от функции на называется объединение всех первообразных на этом интервале. Обозначается: .
Замечание 26.1: Если - одна из первообразных на , то .
Замечание 26.2: Подынтегральное выражение в определении представляет из себя полный дифференциал первообразной на , т.е. .
Замечание 26.3: Два неопределённых интеграла равны “с точностью до постоянной”.

Св-ва неопределенного интеграла:

1.Дифференциал от неопределенного интеграла равен подынтегральному выражению, а производная неопред. интегр. равна подынтегр. функции. Благодаря этому св-ву правильность интегрирования проверяется дифференцированием.

,

2. Неопред. интегр. от дифференциала нек-рой функции равен сумме этой функции и производной постоянной:

3. Постоянный множитель м. выносить за знак интеграла:

, где a0-постоянная.

4. Неопред. интегр. от алгебраич. суммы конечного числа непрерывных функций равен алгебраич. сумме интегралов от слагаемых функций:

5. (Инвариантность формулы интегрирования). Если, то и , где u=- произвольн. функция, имеющая непрерывную производную.























Табличные интегралы