Большая коллекция шпор для МАТАНа (1 семестр 1 курс) (matan2)

Посмотреть архив целиком

Л

По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик

van_mo_mail@mtu-net.ru или на сотовый:

8-901-7271056 спросить Ваню

екция №5

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 25 сентября 2000 г.

Тема: Бесконечно большие последовательности


Теорема:

lim(1-1/n)n=1/e e=2,7183

n+

0an=1-1/n1 nN, то есть an=(1-1/n)n- ограниченна.

n+1an=n+1(1-1/n)n1=n+1(1-1/n)(1-1/n)…(1-1/n)1<[1+(1-1/n)+…+(1-1/n)]/n+1=(n+1-n1/n)/n+1=n/n+1=1-1/n+1

n+1(1-1/n)n<1-1/n+1

(1-1/n)n<(1-1/n+1)n+1

an<an+1 nN последовательность возрастает и ограниченная.

(1-1/n)n – имеет конечный предел

lim(1-1/n)n=1/e

n+

Следствие

lim(1+1/n)n=e

n+

lim1/(1+1/n)n=(n/n+1)n=[1-1/(n+1)]n+1/ [1-1/(n+1)]=(1/e)/1=1/e

n+

lim[1/(1+1/n)n]=1/e

n+

lim(1+1/n)n=e

n+

Определение под последовательности

Пусть дана an зададим произвольный набор натуральных чисел таких, что

n123<…k<….

an1,an2,…,ank,…

Полученная последовательность называется под последовательностью и сходной последовательности.

an=(-1)n

{an}={-1;1;-1;1….}

n1=2;n2=4,….,nk=2k

{ank}={1,1,1,1…}

Теорема

Пусть последовательность an сходится, тогда последовательности

lim an=a {ank} – гас и lim

n+

lim ank=0

n+

Доказательство так как an – сходиться, то ε>0 N: n>N an-a<ε

ank; nk>N то есть ank-a<ε

Пример

an=(-1)n – не имеет предела

{a2n}={1,…,1,…,}

{a2n-1}={-1,….,-1,…}

имели бы тот же самый предел.

Предел функции.

Определение

Пусть y=f(x) определена в O(x0). Мы говорим, что функция f(x) имеет предел в при хх0 если ε>0 >0

x:0<x-x0< f(x)-b<ε

lim f(x)=b

xx

Через окрестности это определение записывается следующим образом

ε>0 >0 x0(x0)f(x)0ε(b)

Если lim f(x)=0, то f(x) наз бесконечно малой при xx0.

xx

Замечание. Необходимо указать в каком именно процессе f(x) бесконечно малое. Надо указать к какому числу а.

f(x)=x-1

1.x1 lim(x-1)=0, то есть y=x-1 бесконечно малое при x1

x1

2.x2 lim(x-1)=1, то есть y=x-1 не является бесконечно малой при x2

x1

Пример

f(x)=2x+1 x1

Докажем lim(2x+1)=3

x1

ε>0 >0 x:0<x-1< (2x+1)-3<ε

(2x+1)-3<ε

|x-1<ε/2

x1

Положим =ε/2

Теорема о бесконечно малом

1)(x);(x) – бесконечно малое xx0 (x)+(x) – бесконечно малое при xx0

2)(x);(x) – бесконечно малое при xx0

3)Если f(x) – ограниченна в O(x0) и (x) – бесконечно малое при xx0, то f(x);(x) – бесконечно малое при xx0

Доказательство (3)

Так как f(x) – ограниченна в O(x0), то С>0: xO(x0)|f(x)C;

Так как (x) – бесконечно малое при хх0, то ε>0 >0 x: 0<x-x0< (x)<ε ε1>0

Положим ε=ε1/c

>0 x: 0<x-x0|< f(x)(x)=f(x)a(x)<Cε=ε1 lim f(x)(x)=0, то есть f(x)a(x) – бесконечно малое при xx0

xx

Лекция №6

Ведущая: Голубева Зоя Николаевна

Дата: среда, 26 сентября 2000 г.

Тема: Замечательные пределы


Теорема

f(x)>g(x) в O(x0) и lim (f(x))=b и lim (g(x))=c. Тогда bc

xx xx

Доказательство:

Рассмотрим функцию (x)=f(x)-g(x)>0 в O(x0) lim ((x))= lim (f(x)) - lim (g(x))= b-c и в силу предыдущей

xx xx xx

теоремы b-c0, то есть b0 что и требовалось доказать.


Теорема

f(x)(x)g(x) xO(x0) и lim (f(x))=b и lim (g (x))=b. lim ( (x))=b

xx xx xx

Доказательство:

f(x)=b+(x)

g(x)=b+(x)

где (x) и (x) – бесконечно малые при хх0

b+(x)(x)b+(x)

Так как (х) и (х) – бесконечно малые то ε>0 1>0: xO1(x0) (x)<ε

2>0: xO2(x0) (x)<ε

Положим =min{1;2}

Тогда xO(x0) (x)<ε

(x)<ε

-ε<(x)<ε

-ε<(x)<ε

b-ε<b+(x)(x)b+(x)<b+ε

-ε<(x)-b<ε

(x)-b<ε xO(x0)

ε>0 =min{1;2} (x)-b<ε xO(x0) то есть lim ( (x))=b

xx

Первый замечательные пределы.

Терема lim (sin(x)/x)=1

x0

Доказательство:

SOMN=1/2 sin(x)

SсекOMN=1/2(x)

SOKN=1/2 tg(x)

SOMN<SсекOMN< SOKN

1/2sin(x)<1/2(x)

sin(x)

1

lim (1-cos(1/n))=0

n+

lim (1-cos(x))=0 lim (cos(x))=1

x0 x0

lim (x/sin(x))=0

x0

x>0

lim (x/sin(x))=1

x0

lim(1/(x/sin(x)))= lim(sin(x)/x)=1 что и требовалось доказать

x0 x0

Определение бесконечного предела и пределов при х+.


lim (f (x))=+ ε>0 >0: xO(x0)f(x)Oε(+)

xx

(x): 0<x-x0<

(////////// x

ε



lim (f (x))=- ε>0 >0: xO(x0)f(x)Oε(-)

xx

(x): 0<x-x0<





lim (f (x))= ε>0 >0: xO(x0)f(x)Oε()

xx

f(x)>ε







lim (f (x))=b ε>0 >0: xO(+)f(x)Oε(b)

x+

x: x> f(x)-b <ε





lim (f (x))=b ε>0 >0: xO(-)f(x)Oε(b)

x-

x: x<- f(x)-b <ε






Односторонние пределы.

Определение

f(x) определена в O+(x0)

lim (f (x))=b ε>0 >0: xO+(x0)f(x)Oε(b) x00+

xx+0







Определение

f(x) определена в O-(x0)

lim (f (x))=b ε>0 >0: xO-(x0)f(x)Oε(b) x0-0

xx-0



Теорема Пусть f(x) определена в O(x0) Для того чтобы существо-

вал предел lim(f(x))=b lim(f(x))=lim(f(x))=b

xx xx+0 xx-0

Пусть lim(f(x))=b, то есть ε>0 >0: xO(x0)f(x)Oε(b) f(x)O(b) для xO+(x0) и для xO-

xx

xO-(x0) lim(f(x));lim(f(x))=b что и требовалось доказать.

xx+0 xx-0

Второй замечательный предел.

Теорема lim(1+1/x)x=e

x+

Доказательство: Пусть n – целая часть х – n=[x] nx<n+1

[1+1/(n+1)]n(1+1/x)x(1+1/n)n+1

Если x+, то n+

[1+1/(n+1)]n+11/[1+1/(n+1)](1+1/x)x(1+1/n)n(1+1/n) lim(1+1/x)x=e

x+


Лекция №7

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 3 октября 2000 г.

Тема: Сравнение бесконечно больших и бесконечно малых.


Определение.

Пусть (x) и (x) – бесконечно малые при хх0 ()

  1. (x) ~ (x) при хх0 () если lim (x)/(x)=1 xx0 ()

  2. (x) и (x) одинакового порядка при хх0 () если lim (x)/(x)=с0 xx0 ()

  3. (x) бесконечно малое более высокого порядка малости чем (x) при хх0 () если lim (x)/(x)=0 xx0 ()



Определение.

Пусть f(x) и g(x) – бесконечно большое при хх0 ()

1) f(x) ~ g(x) при хх0 () если lim f(x)/g(x)=1 xx0 ()

2)f (x) и g (x) бесконечно большие одинакового порядка роста, если при хх0 () если limf(x)/g(x)=с xx0 () <

В частности, если с=1, то они эквивалентны

  1. f (x) бесконечно большое более низкого порядка роста чем g (x) или иначе g(x) бесконечно большое более высокого порядка роста чем g(x) при хх0 () если lim f (x)/g (x)=0 xx0 ()

Примеры:



  1. sin(x) – бесконечно малое

x при хх0 – бесконечно малое

Сравним их lim sin(x)/x=1 sin(x)~x

x0

при х0


  1. 1n(1+x) – бесконечно малое

х при х0 – бесконечно малое

Сравним их lim ln(1+x)/x= lim ln(1+x)1/x =1

x0 x0

ln(1+x) ~ x, при х0



  1. x2 – бесконечно большие

2+1, при х+ – бесконечно большие

Сравним lim x2/(2x2+1) = lim x2/x2(2+1/x2)=1/2

x+ x+

то есть функция является бесконечно большой и

одинакового порядка. Замечание: если одну из

функций одинакового порядка роста домножить на

одинаковую const, то они станут эквивалентны.

Определение:

  1. пусть (х)=о(х) – бесконечно малое при хх0(). То мы говорим, что (х) и (х) при хх0 (), если (х)=(х)(х), бесконечно малое при хх0 (). Другими словами - (х) – бесконечно малое более высокого порядка, чем (х) така как (х)/(х)=(х) – бесконечно малое, то есть lim (x)/(x)=0 x0 ()

  2. пусть f(х)=оg(х) – бесконечно большое при хх0(). То мы говорим, что f(х) и g (х) при хх0 (), если f (х)=(х)g (х). Другими словами - f (х) – бесконечно большое более низкого порядка, чем g(х) так как f(х)/g (х)=(х) – бесконечно малое, то есть lim f (x)/g (x)=0 x0 ()

Шкала бесконечности.

Степенные бесконечности.

xn=o(xm), 0<n<m при х+. Из двух степенных бесконечностей сильнее та, у которой показатель степени больше.

Докажем:

xn=xm(xn/xm)=xm(1/x(m-n))=xm(x) m-n>0 xm(x)o(xm)

Показательные бесконечности.

ах=о(bх), 1<a<b при x+. Из двух показательных бесконечностей сильнее та, у которой основание больше.

Докажам

ax=ax(bx/bx)=ax(a/b)x=bx(xo(bx) (0

Логарифмическая бесконечность

ln(x)=o(x), >0. Логарифмическая бесконечность слабее любой степенной бесконечности.

ln(x)x

lim ln(x)/x=lim [(ln(x)/(x/2x/2))((/2)/(/2))]=

x0 x0

lim [(ln(x)/x/2)(2/(x/2)]

x0

Произведение бесконечно малых на ограниченную

равно бесконечно малой.

lim (ln(x)/x)=0 (lim(x))/x=(x) ln=x(x)ox,

x0

x+

Показательная и степенная.

Xk=o(ax), k>0,a>1 x+ lim(xk)/(ax)=0

x+

Теорема: Пусть (x) ~ 1(x) при xx0 ()

(x) ~ 1(x) при xx0 ()

Тогда lim (x)/(x)=lim 1(x)/1(x)

xx0 () xx0 ()


Доказательство:

lim(x)/(x)=lim[(x)1(x)1(x)]/[1(x)1(x)(x)]=lim((x)/(x))lim(1(x)/(x))lim(1(x)/1(x))=lim 1(x)/1(x) что

x0 x0 x0 x0 x0 x0

и требовалось доказать. Замечание: аналогичное утверждение справедливо для двух бесконечно больших.

Пример:

lim sin(x)/3x=limx/3x=1/3

x0 x0

Определение: (главного слагаемого)

1(x)+2(x)+…+n(x), при xx0 ()

Главным слагаемым в этой сумме называется то слагаемое по сравнению с которым остальные слагаемые являются бесконечно малыми более высокого порядка малости или бесконечно большие более низкого порядка роста.

1(x) – главное слагаемое, если 2(х)=о(1(х)),…,n(x)=o(1(x)) при xx0 ()

Конечная сумма бесконечно малых эквивалентна своему главному слагаемому:

1(x)+2(x)+…+n(x) ~ 1(x) , при xx0 () если 1(х) – главное слагаемое.

Доказательство:

lim [1(x)+2(x)+…+n(x)]/1(x)=lim[1(x)+1(x)(x)+…+1(x)(x)]/1(x)=lim[1(x)(1+1(x)+…+n(x))]/1(x)=1 xx0 () xx0 () xx0 ()

Пример:

lim (ex+3x100+ln3x)/(2x+1000x3+10000=lim ex/2x=lim ex/(ex(x))=+

x+ x+ x+

2x=o(ex)ex(x)

Основные эквивалентности.

ex-1 – бесконечно малое при х0. lim (ex-1)/x=1, то есть ex-1 ~ x при x0

x0

1-cosx – бесконечно малое при х0. lim (1-cos x)/(x2/2)=lim{2sin(2x/2)]/[x2/2]=lim [2(x/2)2]/[x2/2]=1,

то есть


1-cos(x) ~ x2/2 при х0 и (1+x)p-1 ~ px при х0



Лекция №8

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 10 октября 2000 г.

Тема: «Асимптотические формулы»


Формулы содержащие символ о - называются асимптотические.


1) lim [sin(x)/x]=1 (по определению конечного предела sin(x)/x=1+(x), где (х) – бесконечно малое при х0

x0

sin(x)=x+(x)x, где (х) – бесконечно малое при х0 sin(x)=x+ox, при х0; sin(x)~x, при х0

2) lim [ln(1+x)/x]=1 (по определению конечного предела ln(1+x)/x=1+(x), где (х) – бесконечно малое при

x0

х0 ln(1+x)=x+(x)x, где (х) – бесконечно малое при х0 ln(1+x)=x+ox, при х0; ln(1+x)~x, при х0

3) lim [(ex-1)/x]=1 (по определению конечного предела (ex-1)/x=1+(x), где (х) – бесконечно малое при х0

x0

(ex-1)=x+(x)x, где (х) – бесконечно малое при х0 (ex-1)=x+ox, при х0; (ex-1)~x, при х0; ex=1+x+o(x), при x0

4) lim [(1-cos(x)/(x2/2)]=1 (по определению конечного предела (1-cos(x)/(x2/2)=1+(x), где (х) – бесконечно

x0

малое при х0 1-cos(x)=(x2/2)+(x)x2/2, где (х) – бесконечно малое при х0 1- cos(x)=(x2/2)+ox2; при х0; 1- cos(x)~x2/2, при х0; cos=1-x2/2+o(x2), при x0

1) lim [((1+x)p-1)/px]=1 (по определению конечного предела ((1+x)p-1)/px =1+(x), где (х) – бесконечно

x0

малое при х0 (1+x)p-1=px +(x)-p, где (х) – бесконечно малое при х0 (1+x)p-1=px+ox, при х0; (1+x)p-1~px, при х0;(1+x)p=1+p(x)+o(x), при x0


Если f(x)~g(x), при хх0 (), то lim[f(x)/g(x)]=1 f(x)/g(x)=1+(x), где (х)–бесконечно малое при хх0 ()

хх0 ()

f(x)=g(x)+(x)g(x) f(x)=g(x)+og(x) при хх0 ()

Замечание: не всякие бесконечно малые, бесконечно большие можно сравнить.

Пример:

(x)=xsin(1/x), при х0

(х)=ф=х, при х0

(x)/(x)=sin(1/x)

lim[(x)/(x)]=lim[sin(1/x)] – который в свою очередь не существует.

x0 x0

Эти бесконечно малые несравнимы.

Для удобства формул полагают по определению, что о(1)=(х), при хх0 ()

а01 n!=123….n o!

Определение: Пусть y=f(x) определена в О(х0) и lim f(x)=f(x0): y=f(x) при хх0 называется непрерывной в

хх

точке х0 (то есть ε>0 >0: xO(x0) f(x)Oε(f(x0))

Непосредственно из определения предела следуют следуемые теоремы о непрерывных функциях.

Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)+g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0) f(x)+g(x) определена в О(х0)

2) lim (f(x)+g(x))=limf(x)+limg(x)=f(x)+g(x) что и требовалось доказать

хх хх хх


Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0) f(x)g(x) определена в О(х0)

2) lim (f(x)g(x))=limf(x)limg(x)=f(x)g(x) что и требовалось доказать

хх хх хх

Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)/g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0) f(x)/g(x) определена в О(х0)

2) lim (f(x)/g(x))=limf(x)/limg(x)=f(x)/g(x) что и требовалось доказать

хх хх хх

Теорема(об ограниченности непрерывной функции в окрестности точки). Пусть y=f(x) непрерывна в точки х0, тогда она ограниченна в некоторой окрестность этой точки.

Доказательство: limf(x)=f(x0), то есть ε>0 >0 x: x-x0< f(x)-f(x0)<ε . Предполагается, что выбрано так, что f(x) определена в соответствующих точках. О0)О(х0). Так как это справедливо для любого ε>0, то возьмем ε=1 >0 -1<f(x)-f(x0)<1; xO(x0)O(x0) f(x0)-1<f(x)<1+f(x0)x, то есть В<f(x)<A

xO(x0)O(x0)

Теорема:(о непрерывности сложной функции) Пусть y=f(x) непрерывна в точки х0, а z=g(y) непрерывна в точки y0=f(x0), тогда сложная функция имеет вид z=g(f(x0)) – непрерывна в точки х0.

Доказательство: Зададим ε>0 в силу непрерывности z=g(y) в точки у0 б>0x: y-y0|<б g(y)-g(x0)<ε

По найденному б>0 в силу непрерывности функции f(x) в точки х0 >0 x: x-x0< f(x)-f(x0)

ε>0 >0 x:x-x0< y-y0 g(y)-g(y0)<ε g(f(x))-g(f(x0)) то есть lim g(f(x))=g(f(x0))

xx

Замечание: можно переходить к пределу под знаком непрерывной функции limf(x)=limg(y) limf(x)=f(x0)=y0 xx xx xx

Непрерывность некоторых функций.

1) y=c (постоянная) непрерывна в х0 R lim c=c. Зададим ε>0 рассмотрим разность f(x)-f(x0)=c-c=0<ε

xx

x: x-x0< (>0)!

2) y=x непрерывна в x0R, то есть lim x=x0. Зададим ε>0 рассмотрим разность f(x)-f(x0)=x-x0<ε

xx


x: x-x0< (>0)! =ε!



Следствие.

Многочлен p(x)=anxn+ an-1xn-1+…+a1x+a0

(an,an-1…a1,a0зададим число)

n=0,1,2,3…. непрерывен в любой точки х0 оси как сумма произведения непрерывной функции. Рациональная функция:

R(x)=p(x)/q(x). Частная двух многочленов непрерывна в любой точки х0 в которой q(x)0


Лекция №9

Ведущая: Голубева Зоя Николаевна

Дата: среда, 11 октября 2000 г.

Тема: «Точки разрыва»


1) Доказать, что lim [((1+x)p-1)/px]=1

x0

y=(1+x)p-1

lim [((1+x)p-1)/px]= x0 y0 =lim ([ln(1+x)]/x)([(1+x)p-1]/[pln(1+x)]=lim ([ln(1+x)]/x)

x0 (1+x)p=y+1 x0 x0

p[ln(1+x)]=ln(y+1)


lim([(1+x)p-1]/[pln(1+x)]=lim y/[ln(y+1)]=1 что и требовалось доказать (1+x)p-1~px при x0

x0 y0 (1+x)p=1+px+o(x) при х0

2) Доказать, что lim (ex-1)/x=1

x0

y=ex-1

lim (ex-1)/x= x0 y0 =lim y/[ln(y+1)]=1 что и требовалось доказать

x0 ex=y+1 y0

x=ln(y+1)


ex-1~x при x0

ex=1+x+o(x) при х0

Классификация точек разрыва функции.

Определение: Пусть y=f(x) определена в О0), а в самой точке х0 может быть как и определена, так и неопределенна.

1) Точка х0 называется точкой разрыва 1ого рода функции, если

а) Существует lim f(x)’=lim f(x)’’ , но либо функция неопределенна в точки х0 либо f(x0)b. Тогда точка х0

xx+0 xx-0

точка устранимого разрыва.












1,x=1

Y=(x-1)/(x-1)=

Не , x=1












б) f(x)=cb

Можно доопределить или переопределить в точке х0, так что она станет непрерывной.

lim f(x)=b; lim f(x)=c, но bc

xx+0 xx-0

Может быть и определена f(x0)=b

Или f(x0)=d


2)Точка х0 называется точкой разрыва 2ого рода функции если она не является точкой разрыва 1ого порядка, то есть если хотя бы один из односторонних пределов не существует или равен бесконечности.

y=sin(1/x)

Основные теоремы о непрерывных функциях.

Теорема: Все основные элементы функции непрерывны в любой точки своей области определения.

Определение: (функции непрерывной на отрезке)

y=f(x) – называется непрерывной на отрезке [a,b], если она непрерывна в любой точке х(a,b). В точке х=а функция непрерывна справа, то есть lim f(x)=f(a), а в точке х=b функция непрерывна слева lim f(x)=f(b).

xx+0 xx-0

Функция непрерывна на множестве D если она непрерывна в этой точке.


Теорема: (о сохранение знака непрерывной функции)

Пусть y=f(x) непрерывна в точке х0 и f(x0)>0 (f(x0)<0), тогда f(x)>0 f(x)<0 непрерывна в некоторой точки О(х0)

Доказательство: lim f(x)=f(x0) ε>0 >0 x: x-x0< f(x)-f(x0)|<ε.

xx

Пусть f(x0)>0, выберем ε=f(x0) f(x)-f(x0)<f(x0) xO(x0) (>0!)

-f(x0)<f(x)-f(x0)<f(x0); f(x)>0 xO(x0), если f(x0)<0, то ε=-f(x0)


Теорема Коши: ( о нуле непрерывной функции)

Пусть f(x) непрерывна на [a,b] и на концах его принимает значение разных знаков f(a) f(b) <0, тогда x0(a,b): f(x0)=0

Доказательство:

f(b)>0 f(a)<0


Разделим отрезок [a,b] пополам. Если в середине отрезка f(x)=0, то всё доказано, если нет, то выберем ту половину отрезка, на концах которой функция принимает значение разных знаков. Выбранной отрезок поделим пополам. Если в середине нового отрезка f(x)=0, то всё доказано, если нет, то выберем ту половину от той половины, на концах которой функция принимает значение разных знаков и т.д.

[a,b][a1,b1][a2,b2]

Последовательность левых концов удовлетворяет отношению a<a1<a2<…<an<…<b

bb1b2bn…>a

{an}-ограниченная не убывающая lim an=b f(a)<0 f(an)<0 n

x+ [anbn]=(b-a)/2n 0 при n

{bn}-ограниченная не возрастающая lim bn= f(b)>0 f(bn)>0 n

x+

В силу непрерывности функции lim f(an)=f (lim bn)=f()0 lim (bn-an)=-= lim (b-a)/2n=0=

x+ x+ x+ x+

f()0

f()=0 x0=

f()=f()0

Условие непрерывности функции нельзя отбросить: f(b)>0; f(a)<0

Теоремы Вейштрасса.

1) Теорема: Пусть функция y=f(x) непрерывна на отрезке [a,b]. Тогда она ограниченна на нём.

Замечание: а) Условие непрерывности нельзя отбросить



Неограниченна сверху неограниченна







б) Нельзя заменить отрезок на интервал или

полуинтервал.

Непрерывна на (0;1]





2) Теорема: Пусть функция y=f(x) непрерывна на отрезке [a,b]. Среди её значений есть наибольшее и наименьшее.

Замечание: а) Множество [0;1] наибольшее значение 1М

наименьшее значение 0 М

б) Множество (0;1]=М наибольшее значение 1М

нет наименьшего

в) Множество [0;1)=M нет наибольшего

наименьшее значение 0 М

г) Множество (0;1)=М нет ни того не другого.

Условие отрезка нельзя заменить на интервал или полуинтервал.

x(0;1] непрерывна на (0;1] нет наибольшего значения


Случайные файлы

Файл
8202-1.rtf
92130.rtf
136536.rtf
1200.doc
96784.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.