Свойства информации. Единицы измерения количества информации (48916)

Посмотреть архив целиком

  1. Информация. Свойства информации. Единицы измерения количества информации


Базовые понятия

Информация, подходы к определению информации, виды информации, свойства информации; бит, байт, ки­лобайт; вероятностный подход к измерению информа­ции, объемный подход к измерению информации.

Обязательно изложить

Информация относится к фундаментальным, неопреде­ляемым понятиям науки информатика. Тем не менее смысл этого понятия должен быть разъяснен. Предпримем по­пытку рассмотреть это понятие с различных позиций.

Термин информация происходит от латинского слова informatio, что означает сведения, разъяснения, изложение. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполне­ния в различных отраслях человеческой деятельности:

в быту информацией называют любые данные, све­дения, знания, которые кого-либо интересуют. Напри­мер, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п.;

в технике под информацией понимают сообще­ния, передаваемые в форме знаков или сигналов (в этом случае есть источник сообщений, получатель (прием­ник) сообщений, канал связи);

в кибернетике под информацией понимают ту часть знаний, которая используется для ориентирова­ния, активного действия, управления, т.е. в целях со­хранения, совершенствования, развития системы;

в теории информации под информацией пони­мают сведения об объектах и явлениях окружающей

От редакции. В № 6—9 мы опубликовали материалы для подготовки к экзамену в 9-м классе. Начиная с этого номера бу­дут публиковаться материалы для 11-го класса. При этом мы рас­сматриваем билеты для уровня Б (см. № 5), так как билеты для уровня А являются их подмножеством.

среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся степень неопределенности, не­полноты знаний о них.

Применительно к компьютерной обработке данных под информацией понимают некоторую последователь­ность символических обозначений (букв, цифр, закоди­рованных графических образов и звуков и т.п.), несу­щую смысловую нагрузку и представленную в понят­ном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информаци­онный объем сообщения.

Информация может существовать в виде:

текстов, рисунков, чертежей, фотографий;

световых или звуковых сигналов;

радиоволн;

электрических и нервных импульсов;

магнитных записей;

жестов и мимики;

запахов и вкусовых ощущений;

хромосом, посредством которых передаются по наследству признаки и свойства организмов;

и т.д. (приведите примеры других видов существо­вания информации).

Свойства информации (с точки зрения бытового подхода к определению информации):

релевантность — способность информации соот­ветствовать нуждам (запросам) потребителя;

полнота — свойство информации исчерпывающе (для данного потребителя) характеризовать отображае­мый объект или процесс;

своевременность — способность информации со­ответствовать нуждам потребителя в нужный момент времени;

достоверность — свойство информации не иметь скрытых ошибок. Достоверная информация со време­нем может стать недостоверной, если устареет и пере­станет отражать истинное положение дел;

доступность — свойство информации, характе­ризующее возможность ее получения данным потре­бителем;

защищенность — свойство, характеризующее не­возможность несанкционированного использования или изменения информации;

эргономичность — свойство, характеризующее удоб­ство формы или объема информации с точки зрения данного потребителя.

1 бит — минимальная единица измерения информа­ции, при вероятностном подходе к измерению информа­ции, принятом в теории информации, это количество ин­формации, уменьшающее неопределенность знаний в 2 раза.

Связь между единицами измерения информации: •* 1 байт = 8 бит,

1 Кб (килобайт) = 2ю (1024) байт = 213 бит;

1 Мб (мегабайт) = 210 (1024) Кб = = 2го (1048576) байт = 223 бит;

1 Гб (гигабайт) = 210Мб = 220 Кб = 230 байт =

= 233 бит;

1 Тб (терабайт) = 210 Гб = 220Мб = 230 Кб = = 240 байт = 243 бит.

При объемном подходе к измерению информации, характерном для компьютерной обработки данных, ин­формативность сообщения определяется количеством символов, его составляющих.

Желательно изложить

Сравнительная характеристика различных подходов к определению термина "информация". Место инфор­мации в системе "вещество, энергия, информация".

Легализация понятия "информация" с точки зрения компьютерной обработки данных разнообразной природы.

Понятие информации в философии.

Примеры, характеризующие свойства информации, определяемой с бытовой точки зрения.

Детализация понятия "бит" с точки зрения вероят­ностного подхода к измерению информации. Философ­ские и математические аспекты. Примеры.

Пример решения задачи с использованием разных единиц измерения информации.

Примечания для учителей

Изучаемый вопрос находится на стыке философии, информатики, математики. Границы принадлежности указанного материала к той или иной науке достаточно условны. Важно донести это до учащихся. Проблемы введения понятия "информация" как фундаментально­го понятия информатики можно сравнить с проблема­ми аксиоматического подхода к изучению стереомет­рии в школьном курсе геометрии.

Чаще всего абстрактные вопросы малоинтересны уча­щимся, вызывают внутреннее отторжение. Поэтому в данной ситуации важен мотивационный момент.

Примечание для учеников

Первая часть вопроса представляется достаточно слож­ной, затрагивает определенные философские проблемы. Необходимо сравнить, как определяется понятие "ин­формация" в различных литературных и учебных ис­точниках,-привлечь дополнительные материалы.

Ссылка на материалы вопроса

"Информатика" № 13, с. 9 — 11; № 18, с. 19/2002.

2. Основы языка разметки гипертекста (HTML) Базовые понятия

Разметка документа, языки разметки документов, Hyper Text Markup Language, тэг (tag), структура HTML-документа, основные тэги HTML.

Обязательно изложить

Hyper Text Markup Language (HTML) является стан­дартным языком, предназначенным для создания ги­пертекстовых документов в среде Web. HTML-документы могут просматриваться различными типами браузеров (специальными программами, интерпретирующими та­кого рода гипертекстовые документы), наиболее извест­ным из которых является Internet Explorer. В отличие от документов, например текстового процессора Microsoft Word, документы в формате HTML не орга­низованы по принципу WYSIWYG (What You See Is What You Get — что видишь, то и получишь [при вы­воде на печать или монитор] ). Когда документ создан с использованием HTML, браузер должен интерпретиро­вать HTML для выделения различных элементов доку­мента и первичной их обработки с целью их дальней­шего отображения в виде, задуманном автором.

Большинство документов имеют стандартные элемен­ты, такие, как заголовки, параграфы или списки. Ис­пользуя тэги (команды) HTML, можно обозначать дан­ные элементы, обеспечивая браузеры минимальной ин­формацией для их отображения, сохраняя в целом об­щую структуру и информационную полноту докумен­тов. В большинстве случаев автор документа строго оп­ределяет внешний вид документа. В случае HTML чита­тель (основываясь на возможностях браузера) может в определенной степени управлять внешним видом доку­мента (но не его содержимым). HTML позволяет от­метить, где в документе должен быть заголовок или аб­зац, при помощи тэга HTML, а затем предоставляет браузеру интерпретировать эти тэги.

Общая структура тэга и его содержимого такова: <тэг параметр_1=значение_1 параметр_2=значение_2 ... параметр_К=значение_К>содержимое элемента

Любой HTML-документ имеет следующую структуру:

<HTML> <HEAD>

HEAD> <BODY>

BODY> HTML>

Заголовок содержит служебную информацию, в част­ности, предназначенную для поисковых систем.

Все тэги, которые предназначены для оформления до­кумента, могут быть условно разделены на несколько групп:

форматирование;

верстка таблиц;

верстка списков;

формирование гиперссылок;

вставка изображений.

Тэт верстки, таблиц позволяют формировать и отобра­жать таблицы произвольной сложности. Вообще дизайне­ры довольно часто используют таблицы для оформления страниц, помещая в них меню, текст, рисунки и т.д.

Тэги верстки списков позволяют формировать мар­кированные и нумерованные списки.

Гипертекстовый документ невозможно представить себе без ссылок на другие документы (внутренние или внешние). Ссылки формирует тэг <А>... -с обязательным параметром HREF.

Тэг для отображения рисунков — <IMG>. Он не имеет закрывающегося тэга и содержит обязательный параметр SRC, значением которого является адрес фай­ла с рисунком {относительный, т.е. на данном сайте, но, например, в другом каталоге, или абсолютный, если рисунок, например изображение счетчика, подгружает­ся с другого сайта).

Современные web-конструкторы и дизайнеры пользу­ются не только HTML, но и рядом его расширений, например, каскадными таблицами стилей (CSS), уп­равляют содержанием страниц средствами программи­рования.

Желательно изложить

Примеры других программных продуктов для раз­метки документов, принцип их действия.

Заголовок HTML-документа и назначение его эле­ментов.

Тэги форматирования текста и примеры их исполь­зования.

Тэги верстки таблиц и примеры их использования.

Тэги верстки списков и примеры их использования.

Графические форматы для web. Правила сохранения изображений для web, требования к изображениям. Па­раметры тэга IMG.

Понятие о CSS, языках программирования для web. Исполнение программ и скриптов на стороне сервера и клиента.

Примечания для учителей

Вопрос билета является в достаточной мере объем­ным, , поэтому наилучшее запоминание и усвоение ма­териала может быть достигнуто хорошей его структу­ризацией.

Следует отметить, что учащиеся, занимавшиеся верст­кой web-страниц без использования визуальных редакторов (Front Page и др.), окажутся в гораздо более выигрышном положении перед учащимися, выполнявшими такого рода работу только с помощью указанных редакторов.

Примечание для учеников

Для успешного освоения материала данного вопроса достаточно сверстать вручную (без использования визу­ального редактора) 2—3 страницы HTML-документов. Это поможет понять смысл и назначение основных тэ­гов HTML.

Использованные источники информации

1. Усенков Д. Уроки web-мастера. М.: Лаборатория Базовых Знаний, 2001, 432 с.

2. Мат&риалы вопроса // "Информатика" № 5, с. 13-22, 2003.

3. Практическое задание на поиск информации в глобальной компьютерной сети Интернет

Принципы составления задания

При составлении заданий следует учесть, чтобы ис­комая информация была достаточно доступной, актуальной, представляла познавательный интерес для учащихся. В случае невозможности реального поиска в глобальной сети следует воспользоваться програм­мами — имитаторами поиска или осуществлять по­иск в локальной сети (Еремин Е.А. Имитатор поиско­вой машины как эффективное средство обучения по­иску информации в Интернете. // "Информатика" №45, с. 15-20, 2001).

Примеры заданий

"Информатика" № 5, с. 13—22, 2003.

БИЛЕТ № 2

I |8 1. Информационные процессы. Хранение, не- i

| § редача и обработка информации. .

g 2. Основы алгоритмического программирования '

I g (типы данных, операторы, функции, процедуры и т.д.). I

|s 3. Основные этапы инсталляции программно- |

!« го обеспечения. Практическое задание. Инстал- I

i у* ляция программы с носителя информации (дис- .

кет, дисков CD-ROM).

1. Информационные процессы. Хранение, передача и обработка информации

Базовые понятия

Информационный процесс, восприятие информации, передача информации, получение информации, обработ­ка информации, хранение информации, информацион­ная деятельность человека

Обязательно изложить

Под информационным, понимают процесс, связанный с определенными операциями над информацией, в ходе которого может измениться содержание информации или форма ее представления. В информатике к таким процессам относят получение, хранение, передачу, об­работку, использование информации.

Получение информации основано на отражении раз­личных свойств объектов, явлений и процессов окружаю­щей среды. В природе такого рода отражение выража­ется в восприятии с помощью органов чувств. Человек пошел дальше по этому пути и создал множество при­боров, которые многократно усиливают природные спо­собности к восприятию.

Человек воспринимает с помощью органов чувств сле­дующую информацию:

визуальная (восприятие зрительных образов, раз­личение цветов и т.д.) — с помощью зрения;

звуковая (восприятие музыки, речи, сигналов, шума и т.д.) — с помощью слуха;

обонятельная (восприятие запахов) — с помощью обоняния;

вкусовая (восприятие посредством вкусовых рецеп­торов языка) — с помощью вкуса;

тактильная (посредством кожного покрова восприя­тие информации о температуре, качестве предметов и т.д.) — с помощью осязания.

Хранение информации имеет большое значение для многократного использования информации, передачи информации во времени.

Передача информации необходима для того или ино­го ее распространения. Простейшая схема передачи такова:

источник информации — канал связи — прием­ник {получатель) информации

Для передачи информации с помощью технических средств необходимо кодирующее устройство, предназ­наченное для преобразования исходного сообщения ис­точника информации к виду, удобному для передачи, и декодирующее устройство, необходимое для преобра­зования кодированного сообщения в исходное.

Обработка информации подразумевает преобразова­ние ее к виду, отличному от исходной формы или со­держания информации.

Наиболее общая схема обработки информации такова: входная информация — преобразователь инфор­мации — выходная информация

Процесс изменения информации может включать в себя, например, такие действия: численные расчеты, ре­дактирование, упорядочивание, обобщение, системати­зация и т.д.

Деятельность человека, которая связана с процесса­ми получения, преобразования, накопления, передачи и использования информации, управления, называют ин­формационной деятельностью.

Основные вехи в процессе развития и совершенство­вания информационной деятельности человека перечис­лены ниже.

Появление речи. Значительно расширило возможнос­ти информационной деятельности человека, в особен­ности передачи информации.

Возникновение письменности. Дало возможность дол­говременного хранения информации и передачи накоп­ленных знаний и культурных ценностей последующим поколениям.

Изобретение книгопечатания. Революция в мире ти­ражирования знаний, хранящихся в письменном виде. Расширение научной информации, развитие художе­ственной литературы и т.д.

Изобретение ЭВМ — универсальных инструментов информационной деятельности.

Желательно изложить

Провести аналогию между информационной дея­тельностью человека и реализацией информационных

процессов в электронных вычислительных машинах. Привести примеры информационной деятельности че­ловека.

Охарактеризовать основные вехи в процессе раз­вития и совершенствования информационной дея­тельности человека. Почему компьютер является уни­версальным инструментом информационной деятель­ности?

Примечание для учителей

Данный вопрос является общим по информацион­ным процессам. Детализированное изложение предпо­лагается в других билетах. Поэтому следует ограничить­ся общим обзором с примерами по каждому виду дея­тельности.

Примечание для учеников

Необходимо выполнить полный обзор информаци­онных процессов, привести примеры по каждому из них. Обзор выполнить в общем виде, подробности из­лагаются в других билетах.

Ссылка

"Информатика" № 13, с. 9—13, 2002.

2. Основы алгоритмического программирования (типы данных, операторы, функции, процедуры и т.д.)

Базовые понятия

Аргументы и результаты алгоритма, промежуточные величины.

Тип данных (определяет, какие значения может при­нимать величина, какие операции над ней можно вы­полнять и как она хранится в памяти машины).

Простые и сложные типы данных. Простому типу соответствует только одно текущее значение, а слож­ный объединяет несколько.

Операторы: присваивания и управляющие (развил­ка, цикл).

Процедура и функция.

Обязательно изложить

Примечание. Изложение стоит вести применительно к тому языку программирования, который изучался в школе. Из-за наличия некоторых особенностей языков данное замечание может в некоторых деталях оказаться существенным.

В программировании налицо две взаимосвязанные сос­тавляющие процесса решения задачи: собственно дан­ные и инструкции по их обработке, т.е. алгоритм.

Рассмотрение начнем с первой составляющей — дан­ных. По роли данных в алгоритме различают исходные (входные) данные, выходные (чаще говорят — резуль­тат) и рабочие (промежуточные) данные.

Каждая величина в алгоритме имеет свой тип. Тип величины определяет, какие значения может принимать величина, какие операции над ней можно выполнять и как она хранится в памяти машины.

БИЛЕТ № 5

1. Функциональная схема компьютера (ос-: новные устройства, их взаимосвязь). Характе-I ристики современных персональных компью-I теров.

2. Технология объектно-ориентированного : программирования (объекты, их свойства и ! методы, классы объектов).

3. Задача. Определение результата выполне­ния алгоритма по его блок-схеме или записи на языке программирования.

1. Функциональная схема компьютера (основные устройства, их взаимосвязь). Характеристики современных персональных компьютеров

Базовые понятия

Функциональные устройства компьютера: процессор, память (внутренняя и внешняя), устройства ввода и вывода информации.

Шина (информационная магистраль) — основное устройство для переноса информации между блоками компьютера. Ее составляющие: шина адреса, шина данных и шина управления.

Основные характеристики компьютера: процессор — тактовая частота; ОЗУ и видеопамять — объем; набор периферийных устройств и возможности их расширения.

Обязательно изложить

Современный компьютер есть сложное электронное устройство, состоящее из нескольких важных функцио­нальных блоков, взаимодействующих между собой.

Главным устройством компьютера является процес­сор. Он служит для обработки информации и, кроме того, обеспечения согласованного действия всех узлов, входящих в состав компьютера.

Для хранения данных и программы их обработки в компьютере предусмотрена память. Информация по решаемым в данный момент задачам хранится в опе­ративном запоминающем устройстве (ОЗУ). Для со­хранения результатов необходимо использовать носи­тель внешней памяти, например, магнитный или оп­тический диск.

Для задания исходных данных и получения инфор­мации о результатах необходимо дополнить компью­тер устройствами ввода и вывода.

Все устройства компьютера взаимодействуют меж­ду собой единым способом через посредство специаль-

ной информационной магистрали или шины. Непос­редственно к шине подсоединяются процессор и внут­ренняя память (ОЗУ и ПЗУ). Остальные устройства для согласования с шиной имеют специальные кон­троллеры, назначение которых состоит в обеспечении стандартного обмена информацией через шину. Шина компьютера состоит из трех частей:

шина адреса, на которой устанавливается адрес тре­буемой ячейки памяти или устройства, с которым бу­дет происходить обмен информацией;

шина данных, по которой, собственно, и будет пе­редана необходимая информация;

шина управления, регулирующая этот процесс.

Рассмотрим в качестве примера, как процессор чи­тает содержимое ячейки памяти. Убедившись, что шина свободна, процессор помещает на шину адреса требу­емый адрес и устанавливает необходимую служебную информацию (операция — чтение, устройство — ОЗУ и т.п.) на шину управления. ОЗУ, "увидев" на шине обращенный к нему запрос на чтение информации, из­влекает содержимое необходимой ячейки и помещает его на шину данных (разумеется, реальный процесс зна­чительно более детальный).

Подчеркнем, что на практике функциональная схе­ма может быть значительно сложнее: компьютер мо­жет содержать несколько процессоров, прямые инфор­мационные каналы между отдельными устройствами, несколько взаимодействующих шин и т.д.

Магистральная структура позволяет легко подсоеди-. нять к компьютеру именно те внешние устройства, которые нужны для данного пользователя.

Характеристики персональных компьютеров факти­чески представляют собой совокупность характеристик отдельных устройств, его составляющих (хотя, строго говоря, они должны разумно соответствовать друг дру­гу) . Наиболее важными из них являются следующие.

Главная характеристика процессора — тактовая час­тота. Такты — это элементарные составляющие машин­ных команд. Для организации их последовательного вы­полнения в компьютере имеется специальный генератор импульсов. Очевидно, что чем чаще следуют импульсы, тем быстрее будет выполнена операция, состоящая из фиксированного числа тактов. Тактовая частота в совре­менных компьютерах измеряется в гигагерцах, что соот­ветствует миллиардам импульсов в секунду.

С теоретической точки зрения важной характерис­тикой процессора является его разрядность. На прак­тике же все выпускаемые в данный момент процессо­ры имеют одинаковую (причем достаточную для по­давляющего большинства практических целей) разрядность. С другой стороны, при выборе компьютера важ­ное значение имеет набор окружающих процессор микросхем (так называемый "чипсет" ), но детали этого вопроса выходят далеко за рамки билета.

Объемы ОЗУ и видеопамяти также являются важ­ными характеристиками компьютера. Единицей их из­мерения в настоящий момент является мегабайт, хотя в некоторых наиболее дорогих моделях оперативная память уже превышает 1 гигабайт. Еще одной, "более технической", характеристикой является время досту­па к памяти — время выполнения операций записи или считывания данных, которое зависит от принципа действия и технологии изготовления запоминающих элементов.

По технологии изготовления различают статические и динамические микросхемы памяти. Первая является более быстродействующей, но, соответственно, и более дорогой. В качестве компромиссного решения в совре­менных компьютерах применяется сочетание большого основного объема динамического ОЗУ с промежуточ­ной (между ОЗУ и процессором) статической кэш-па­мятью. Ее объем также оказывает существенное влия­ние на производительность современного ПК.

Важной характеристикой компьютера является его оснащенность периферийными устройствами. Читате­ли легко смогут привести здесь достаточное количество примеров. Хочется только подчеркнуть, что существенна 'также возможность подключения к машине дополни7 тельных внешних устройств. Например, современно­му компьютеру совершенно необходимо иметь разъе­мы USB1, через которые к нему можно подключать множество устройств: от принтера и мыши до флэш-диска и цифрового фотоаппарата.

Желательно изложить

При обращении к внешним устройствам использу­ются специальные регистры, которые принято назы­вать портами.

Обмен по шине между устройствами при опреде­ленных условиях и при наличии вспомогательного кон­троллера может происходить без непосредственного участия процессора. В частности, возможен такой об­мен между периферийным устройством и ОЗУ (пря­мой доступ к памяти).

Оба вида запоминающих микросхем — статические и динамические — успешно конкурируют между со­бой. С одной стороны, статическая память значитель­но проще в эксплуатации и приближается по быстро­действию к процессорным микросхемам. С другой сто­роны, она имеет меньший информационный объем и большую стоимость, сильнее нагревается при работе. На практике в данный момент выбор микросхем для построения ОЗУ всегда решается в пользу динамиче­ской памяти. И все же быстродействующая статиче-

1 USB (Universal Serial Bus) — универсальная последователь­ная шина.

екая память в современном компьютере обязательно есть: она называется кэш-памятью.

Кэш невидим для пользователя, так как процессор использует его исключительно самостоятельно. Кроме сохранения данных и команд, считываемых из ОЗУ, в специальном каталоге кэш запоминаются также адре­са, откуда информация была извлечена. Если информа­ция потребуется повторно, уже не надо будет терять время на обращение к ОЗУ — ее можно получить из кэш-памяти значительно быстрее. Кэш-память явля­ется очень эффективным средством повышения произ­водительности компьютера.

Примечания для учителей

Если в аналогичном билете 9-го класса упор делался на перечисление основных устройств компьютера, их примеров и функций, то при ответе на выпускном экзамене данный материал служит лишь введением. Основное содержание первой части вопроса служит описанием процесса взаимодействия узлов компьюте­ра через общую информационную шину.

Во второй половине вопроса следует не просто тре­бовать от учеников перечисления характеристик ком­пьютера и их значений, но и разъяснения их сущности и особенно знания тех свойств компьютерной систе­мы, на которых данные характеристики сказываются. Например, какое влияние оказывает недостаточный объем ОЗУ и почему, для каких приложений требует­ся большое количество видеопамяти, а какие вполне работоспособны при минимальном и т.п.

Примечание для учеников

Вопрос довольно объемный, но с практической точ­ки зрения понятный. Поэтому ограничимся единствен­ной рекомендацией: изобразите все упомянутые в рас­сказе блоки компьютера в виде схематического рисун­ка, что значительно 'облегчит объяснения.

Ссылки

Большое количество дополнительного материала по данному билету можно найти в книге Е.А. Еремина "Популярные лекции об устройстве компьютера" (СПб.: BHV-Петербург, 2003).

"Информатика" № 9, 2002, с. И —13.

2. Технология объектно-ориентированного программирования (объекты, их свойства и методы, классы объектов)

Базовые понятия

Парадигма программирования, объектно-ориенти­рованное программирование, объект, метод, инкапсу­ляция, наследование, полиморфизм.

Обязательно изложить

Основополагающей идеей одного из популярных в настоящее время подходов к программированию — объектно-ориентированного — является объединение

БИЛЕТ № 6

1. Устройства памяти компьютера. Внешние носи­тели информации (гибкие диски, жесткие диски, диски CD-ROM/R/RW, DVD и др.). Принципы записи и считывания информации.

2. Визуальное объектно-ориентированное програм­мирование. Графический интерфейс: форма и управ­ляющие элементы.

3. Векторная графика. Практическое задание. Соз­дание, преобразование, сохранение, распечатка рисунка в среде векторного графического редактора.

1. Устройства памяти компьютера. Внешние носители информации (гибкие диски, жесткие диски, диски CD-ROM/R/RW, DVD и др.). Принципы записи и считывания информации

Базовые понятия

Внешняя память, накопитель, носитель информации, магнитный носитель, оптический носитель.

Обязательно изложить

Внешняя (долговременная) память — это место дли­тельного хранения данных (программ, результатов рас­четов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьюте­ры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения — но­сителя.

Основные виды накопителей:

накопители на гибких магнитных дисках (НГМД);

накопители на жестких магнитных дисках (НЖМД);

накопители на магнитной ленте (НМЛ);

накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

гибкие магнитные диски (Floppy Disk)',

жесткие магнитные диски (Hard Disk);

кассеты для стримеров и других НМЛ;

диски CD-ROM, CD-R, CD-RW, DVD-R, DVD-RW. Основные характеристики накопителей и носителей:

информационная емкость;

скорость обмена информацией;

надежность хранения информации;

стоимость.

Принцип работы магнитных запоминающих уст­ройств основан на способах хранения информации с ис­пользованием магнитных свойств материалов. Как прави­ло, магнитные запоминающие устройства состоят из соб­ственно устройств чтения/записи информации и маг­нитного носителя, на который непосредственно осуще­ствляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими харак­теристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая тех­нология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носите­ли, как правило, намагничиваются вдоль концентрических полей — дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись произво­дится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечника­ми, на обмотки которых подается переменное напряже­ние. Изменение величины напряжения вызывает измене­ние направления линий магнитной индукции магнитного поля и при намагничивании носителя означает смену зна­чения бита информации с 1 на 0 или с 0 на 1.

Компакт-диск диаметром 120мм (около 4,75") изго­товлен из полимера и покрыт металлической пленкой. Информация считывается именно с этой металлической пленки, которая покрывается полимером, защищающим данные от повреждения. CD-ROM является односторон­ним носителем информации.

Считывание информации с диска происходит за счет регистрации изменений интенсивности отраженного от алюминиевого слоя излучения маломощного лазера. При­емник, или фотодатчик, определяет, отразился ли луч от гладкой поверхности, был рассеян или поглощен. Рассеива­ние или поглощение луча происходит в местах, где в про­цессе записи были нанесены углубления. Фотодатчик вос­принимает рассеянный луч, и эта информация в виде элект­рических сигналов поступает на микропроцессор, который преобразует эти сигналы в двоичные данные или звук.

Скорость считывания информации с CD-ROM срав­нивают со скоростью считывания информации с музы­кального диска (150 Кб/с), которую принимают за еди­ницу. На сегодняшний день наиболее распространенны­ми являются 52-скоростные накопители CD-ROM (ско­рость считывания — 7500 Кб/с).

Устройства с возможностью многократной записи на оптический диск используют многослойный диск с отра­жающей поверхностью, перед которой находится слой

БИЛЕТ № 8

1. Назначение и состав операционной системы | компьютера. Загрузка компьютера.

2. Законы логики.

3. Практическое задание на построение таблицы

I и графика функции в среде электронных таблиц. I

1. Назначение и состав операционной системы компьютера. Загрузка компьютера

Базовые понятия

Операционная система — важнейшая часть систем­ного программного обеспечения, которая организует процесс выполнения задач на ЭВМ, распределяя для этого ресурсы машины, управляя работой всех ее уст­ройств и взаимодействием с пользователем.

Ресурсы компьютера: процессорное время, память всех видов, устройства ввода/вывода, программы и данные.

Hardware (компьютерное оборудование) и software (программное обеспечение).

Функции операционной системы.

Обязательно изложить

Операционная система организует совместную ра­боту компьютерного оборудования и прикладного про­граммного обеспечения и служит своеобразным про­граммным расширением управляющего устройства компьютера.

Зачем нужен еще один дополнительный программ­ный слой? По нескольким причинам. Во-первых, не­возможно заложить в компьютер информацию обо всех устройствах, которые к нему могут быть подсоедине­ны. Загружаемая (а следовательно, изменяемая) про­граммная часть, обеспечивающая работу компьютер­ной аппаратуры, решает данную проблему. Во-вторых, наличие операционной системы очень существенно об­легчает разработку нового прикладного ПО, посколь­ку все наиболее часто встречающиеся при работе с компьютерным оборудованием функции сконцентри­рованы в ОС и о них уже не надо заботиться. В-треть­их, пользователь получает стандартный интерфейс для диалога с ПО, что существенно облегчает освоение новых программ.

ОС современного компьютера выполняет следую­щие функции.

Организация согласованного выполнения всех про­цессов в компьютере. Планирование работ, распреде­ление ресурсов.

Организация обмена с внешними устройствами. Хранение информации и обеспечение доступа к ней, предоставление справок.

Запуск и контроль прохождения задач пользователя.

Реакция на ошибки и аварийные ситуации. Конт­роль за нормальным функционированием оборудования.

Обеспечение возможности доступа к стандартным системным средствам (программам, драйверам, ин­формации о конфигурации и т.п.).

Обеспечение общения с пользователем.

Сохранение конфиденциальности информации в многопользовательских системах.

Значительная часть операционной системы загруже­на в память постоянно. Программы для некоторых редко используемых операций типа форматирования дискет чаще всего оформляются в виде самостоятельных слу­жебных программ и хранятся на внешних носителях. Такие программы часто называют утилитами. Кроме того, в ОС, как правило, включают небольшой стандарт­ный набор самого необходимого программного обеспе­чения, например, простейший текстовый редактор.

Процесс загрузки ОС в заметно упрощенном виде выглядит так. При включении компьютера стартует выполнение программы начальной загрузки, находя­щейся в ПЗУ. Сначала ищется и тестируется установ­ленное оборудование. Если все устройства функцио­нируют нормально, информация о них запоминается и происходит переход к поиску начального загрузчика операционной системы. Он может находиться на же­стком диске, на дискете, на CD-ROM и даже быть получен с помощью сетевой платы. Поэтому компью­тер опрашивает перечисленные устройства по очереди до тех пор, пока не обнаружит требуемую информа­цию. Загрузчик представляет собой не что иное, как программу дальнейшей загрузки. Он загружает в ОЗУ остальную часть операционной системы, и машина сможет наконец нормально общаться с пользователем.

Современные компьютеры в основном используют внешние устройства Plug and Play (переводится "вклю­чил и работай"), поэтому они способны в процессе загрузки' сообщить процессору свои основные харак­теристики и условия работы.

Желательно изложить

Первые операционные системы (СР/М, MS-DOS, Unix) вели диалог с пользователем на экране тексто­вого дисплея: человек вводил очередную команду, а

13

компьютер, проверив ее, либо выполнял, либо отвер­гал по причине ошибки. Такие системы в литературе принято называть ОС с командной строкой.

Развитие графических возможностей дисплеев при­вело к появлению графического интерфейса, когда объек­ты манипуляций в ОС изображаются в виде небольших рисунков, а необходимые действия тем .или иным об­разом выбираются либо из меню, либо с помощью ма­нипулятора "мышь". Примерами операционных сис­тем с графическим интерфейсом служат MacOS (для компьютеров Macintosh), OS/2 и Windows.

Для "классических" ОС с командной строкой до­вольно четко выделяются три основные части:

машинно-зависимая часть для работы с конкрет­ными видами оборудования;

базовая часть, не зависящая от конкретных дета­лей устройств: она работает с абстрактными логиче­скими устройствами и при необходимости вызывает функции из предыдущей части; отвечает за наиболее общие принципы работы ОС;

программа ведения диалога с пользователем.

Состав операционных систем с графическим интер­фейсом типа Windows заметно шире, но в целом име­ет похожее строение.

Порядок опроса устройств при поиске начального загрузчика ОС может быть легко изменен с помощью коррекции сведений о конфигурации компьютерного оборудования (BIOS setup).

Примечание для учителей

По сравнению с билетом для 9-го класса в тексте вопроса нет прямого упоминания о типе интерфейса. Именно поэтому нам пришлось перенести достаточно важный материал об ОС с командной строкой и с графическим интерфейсом в необязательный раздел. Кстати, очень забавно, когда формулировка билета в одиннадцатом классе меньше, чем в девятом...

Примечание для учеников

Лучше не механически заучивать перечисленные для изложения факты, а постараться разобраться в них и привести для себя в какую-то определенную систему. Может быть, постараться дать каждому из них корот­кое легко понятное вам название и запоминать уже эти названия. В любом случае не забывайте, что в от­вете на экзамене ценится не дословность воспроизве­дения материала, а умение им пользоваться, т.е. объяс­нять и отвечать на вопросы.

2. Законы логики Базовые понятия

Понятие, суждение, умозаключение. Истинность, ложность суждений и умозаключений. Законы логики как возведенные в принципы харак­терные черты мышления.

Обязательно изложить

Предметом логики является структура мышления, его формы и законы. Выделяются три формы мышления: понятие, суждение, умозаключение. Понятие — это форма мышления, в которой фиксируются существен­ные признаки отдельного предмета или класса однород­ных предметов. Понятия выражаются словами или груп­пами слов. Примером понятия является термин "пап­ка", обозначающий один из элементов файловой систе­мы большинства ОС. Суждение — форма мышления^ в которой что-либо утверждается или отрицается о пред­метах, их свойствах или отношениях. Суждение выра­жается в форме повествовательного предложения. Суж­дение может быть простым или сложным. Пример сужде­ния — "Папка не является файлом". Умозаключение — форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по опре­деленным правилам получается заключение.

Закон в логике понимается как требование или прин­цип, которому необходимо следовать, чтобы мышле­ние было правильным. Из многих возможных требо­ваний были выделены те, которые наиболее тесно свя­заны с такими свойствами мышления, как последова­тельность, определенность, непротиворечивость и обос­нованность: закон тождества, закон непротиворечия, закон исключенного третьего, закон достаточного ос­нования. Рассмотрим каждый из них более подробно.

Закон тождества формулируется следующим образом: "В процессе определенного рассуждения всякое поня­тие или сркдение должны быть тождественны самим себе". В мышлении этот закон выступает в качестве нор­мативного правила: в процессе рассуждения нельзя под­менять одну мысль другой, одно понятие другим. Нельзя выдавать тождественные мысли за различные, а различ­ные — за тождественные. Нарушение закона тождества приводит к двусмысленности. Например: "Откуда бе­рется хлеб? Отвечай! — Это я знаю, он печется... — Печется? О ком это он печется? — Не о ком, а из чего... Берешь зерно, мелешь его... — Не зерно ты мелешь, а чепуху!" (Л.Кэрролл. "Алиса в Зазеркалье").

Закон непротиворечия утверждает: "Два противо­положных суждения не могут быть истинными в одно и то же время и в одном и том же отношении". На­пример, суждения "Петя Иванов учится в нашем клас­се" и "Петя Иванов не учится в нашем классе" явля­ются противоречивыми, и истинным может быть лишь одно из них. Суждения "Петя Иванов учится в нашем классе" и "Петя Иванов не учился в нашем классе" могут быть непротиворечивыми, а значит, могут быть истинными или ложными одновременно.

Закон исключенного третьего формулируется следую­щим образом: "Из двух противоречащих друг другу срк-дений одно истинно, другое ложно, а третьего не дано". Действие этого закона оказывается неограниченным лишь в "жестких" предсказуемых ситуациях. Например, суж­дения "Завтра в 15 часов будет солнечное затмение" и "Завтра в 15 часов не будет солнечного затмения" под­чиняются этому закону, поскольку день и час очередного

БИЛЕТ № 10

Представление целых и вещественных чисел

I в памяти персонального компьютера.

| 2. Логическая схема триггера. Использование

I триггеров в оперативной памяти.

г 3. Задача. Разработка алгоритма (программы),

.содержащего команду (оператор) ветвления.

1. Представление целых и вещественных чисел в памяти персонального компьютера

Базовые понятия

Целые и вещественные числа.

Знаковый разряд. Дополнительный код.

Переполнение — получение результата, для сохране­ния которого в машине недостаточно двоичных разрядов.

Представление с плавающей запятой; мантисса и порядок. Нормализованные числа.

Обязательно изложить

Числовая информация была первым видом инфор­мации, который начали обрабатывать ЭВМ, и долгое время она оставалась единственным видом. Поэтому неудивительно, что в современном компьютере суще­ствует большое разнообразие типов чисел.

Целые числа. Для того чтобы различать положитель­ные и отрицательные числа, в их двоичном представле­нии выделяется знаковый разряд. По традиции исполь­зуется самый старший бит, причем нулевое значение в нем соответствует знаку плюс, а единичное — минусу.

Из сказанного следует, что положительные числа представляют собой обычное двоичное изображение числа (с нулем в знаковом бите). А вот для записи отрицательных чисел используется специальный код, называемый в, литературе дополнительным. Для прак­тического получения кода отрицательных чисел исполь­зуется Следующий алгоритм:

модуль числа перевести в двоичную форму;

проинвертировать каждый разряд получившегося кода, т.е. заменить единицы нулями, а нули — единицами;

к полученному результату обычным образом при­бавит единицу.

Вещественные числа. Для хранения этого типа данных в памяти современных ЭВМ обычно использу­ется представление чисел с плавающей запятой. Оно фактически взято из математики, где любое число А в

системе счисления с основанием О предлагается запи­сывать в виде

А = (±М) • Q±f,

где М называют мантиссой, а показатель степени Р — порядком числа. Для десятичной системы это выгля­дит очень привычно, например: заряд электрона ра­вен — 1,6 • 1СГ'19 Кл, а скорость света в вакууме состав­ляет 3 • 108 м/с.

Арифметика чисел с плавающей запятой оказывается заметно сложнее, чем для целых. Тем не менее вычисли­тельные машины со всем этим великолепно умеют авто­матически справляться. Заметим, что для процессоров Intel все операции над вещественными числами вынесе­ны в отдельный функциональный узел, который принято называть математическим сопроцессором; до 486-й мо­дели он представлял собой отдельную микросхему.

Таким образом, при использовании метода представ­ления вещественных чисел с плавающей запятой в памя­ти фактически хранятся два числа: мантисса и порядок. Разрядность первой части определяет точность вычисле­ний, а второй — диапазон представления чисел.

К описанным выше общим принципам представле­ния вещественных чисел необходимо добавить прави­ла кодирования мантиссы и порядка. Эти правила могут отличаться для различных машин, и мы не будем их здесь рассматривать.

Таким образом, если сравнить между собой представ­ление целых и вещественных чисел, то станет отчетливо видно, как сильно различаются числа, скажем, 3 и 3.0.

Желательно изложить

Беззнаковые целые числа. Хотя в математиче­ских задачах не так часто встречаются величины, прин­ципиально не имеющие отрицательных значений, без­знаковые типы данных получили в ЭВМ большое рас­пространение. Причина состоит в том, что в самой машине и программах для нее имеется много такого рода объектов: прежде всего адреса ячеек, а также всевозможные счетчики (количество повторений цик­лов, число параметров в списке или символов в текс­те) . К этому списку добавим наборы чисел, обозначаю­щие дату и время, размеры графических изображений в пикселях. Все перечисленное выше принимает толь­ко целые и неотрицательные значения.

Минимальное значение для данного числового типа по определению равно 0, а максимальное состоит из единиц во всех двоичных разрядах, а потому зависит от их количества:

max- 2N- I, — где N — разрядность чисел.

Результат вычислений, например после умножения, при определенных условиях может потребовать для своего размещения большего количества разрядов, чем имеется на практике. Проблема выхода за отведен­ную разрядную сетку машины называется переполне­нием. Факт переполнения всегда фиксируется путем установки в единицу специального управляющего бита, который последующая программа имеет возможность проанализировать. Образно говоря, процессор заме­тит переполнение, но предоставляет программному обеспечению право принять решение реагировать на него или проигнорировать.

При сохранении вещественного числа некоторое неудобство вносит тот факт, что представление числа в плавающей форме не является единственным:

3 • 108= 30 • 107 = 0,3 • 109 = 0,03 • 1010 = ...

Поэтому договорились для выделения единственно­го варианта записи числа считать, что мантисса всегда меньше единицы (т.е. целая часть отсутствует), а пер­вый разряд содержит отличную от нуля цифру — в нашем примере обоим требованиям удовлетворит толь­ко число 0,3 • 109. Описанное представление чисел на­зывается нормализованным и является единственным. Любое число легко нормализуется с помощью фор­мального алгоритма.

Все сказанное о нормализации можно применять и к двоичной системе:

А = (±Л4) • 2±р, причем 1/2 < М < 1.

Существенно, что двоичная мантисса всегда начи­нается с единицы (М > 1/2). Поэтому во многих ЭВМ эта единица даже не записывается в ОЗУ, что позволяет сохранить вместо нее еще один дополни­тельный разряд мантиссы (так называемая "скрытая единица").

Примечание для учителей

Изложение, приведенное ранее в полных материа­лах билета (см. ссылку после вопроса), гораздо под­робнее, чем это необходимо для ответа на экзамене, зато представляет собой достаточно полное систе­матическое описание вопроса. Автор надеется, что знание деталей будет полезно учителю при подго­товке рассказа на уроке. В данной публикации сде­лана попытка выделить тот самый минимум, кото­рый ученику необходимо включить в свой ответ на экзамене.

Примечания для учеников

При ответе надо быть готовым к дополнительным вопросам об обосновании тех или иных утверждений. Например, каковы максимальное и минимальное зна­чения 8-битного целого числа со знаком и почему их модули не равны.

Как обычно, при подготовке вопроса необходимо продумать и подобрать примеры к своему рассказу.

Ссылка на материалы по вопросу

Полный текст материалов вопроса опубликован в "Информатике" № 11, 2003, с. 9 — 13.

2. Логическая схема триггера. Использование триггеров в оперативной памяти

Базовые понятия

Триггер.

Входы для сброса и установки триггера, прямой и инверсный выходы.

Статическое (на триггерах) и динамическое (на базе конденсаторов) ОЗУ.

Обязательно изложить

Триггер — это электронная схема, которая может находиться в одном из двух устойчивых состояний; последним условно приписывают значения 0 и 1. При отсутствии входных сигналов триггер способен сохра­нять свое состояние сколь угодно долго. Таким обра­зом, из определения следует, что триггер способен хранить ровно 1 бит информации.

Можно без преувеличения сказать, что триггер явля­ется одним из существенных узлов ЭВМ. Как правило, некоторое количество триггеров объединяют вместе, при этом полученное устройство называется регистром.

Рассмотрим логическое устройство триггера. На рисунке а приведена простейшая схема триггера, а на рисунке б показано его обозначение на схемах как единого функционального узла.

Q

Начнем с расшифровки обозначений входов и выхо­дов. Триггер имеет два входа — S (от англ. Set — уста­новка) и R (Reset — сброс), которые используются соответственно для установки триггера в единичное и сброса в нулевое состояния. Вследствие таких обозначе­ний рассматриваемую схему назвали RS-триггером. Один из выходов, обозначенный на схеме Q, называется пря­мым, а противоположный выход — инверсным (это показывает черта над Q, которая в математической ло­гике обозначает отрицание). За единичное состояние триггера договорились принимать такое, при котором

Q=i-

Обратимся теперь к рисунку а. Видно, что триггер состоит из двух одинаковых двухвходовых логических элементов ИЛИ-НЕ (ИЛИ обозначается символом 1 внутри элемента, а отрицание НЕ — небольшим кру­жочком на его выходе), соединенных определенным

2004 № 16 ИНФОРМАТИКА

Готовимся к экзамену по информатике

Е.А. Еремин, В.И. Чернатынский, А.П. Шестаков,

Продолжение. См. № Л 0-15/2004

БИЛЕТ № 13

1. Понятие алгоритма. Свойства алгоритма. Испол­нители алгоритмов (назначение, среда, режим рабо­ты, система команд). Компьютер как формальный исполнитель алгоритмов (программ).

2. Позиционные и непозиционные системы счис­ления. Запись чисел в позиционных системах счисле­ния.

3. Практическое задание. Решение простейшей оп­тимизационной задачи в среде электронных таблиц. |

I________________________________________________I

1. Понятие алгоритма. Свойства алгоритма. Исполнители алгоритмов (назначение, среда, режим работы, система команд). Компьютер как формальный исполнитель алгоритмов (программ)

Базовые понятия

Алгоритм — понятное и точное указание исполните­лю совершить последовательность действий, направлен­ных на решение поставленной задачи.

Свойства алгоритма: дискретность, понятность, опре­деленность, результативность, корректность, массовость.

Исполнитель — человек или автоматическое устрой­ство, которое выполняет алгоритмы.

Система команд, режим работы исполнителя.

Обязательно изложить

Наша жизнь буквально насыщена алгоритмами. Вспом­ним кулинарные рецепты, инструкции к сложной быто­вой технике, умножение "столбиком" и деление "угол­ком", перевод из десятичной системы в двоичную и мно­жество других примеров.

Алгоритм — это правила, описывающие процесс пре­образования исходных данных в требуемый результат. Чтобы произвольные правила действительно были алго­ритмом, они должны обладать следующими свойствами.

Дискретность. Процесс решения задачи должен быть разбит на четкую последовательность отдельных шагов, каждый из которых принято называть командой.

Понятность. Каждая команда алгоритма должна быть понятна тому, кто исполняет алгоритм; в против­ном случае она (и, следовательно, весь алгоритм в це­лом) не может быть выполнена. В информатике часто говорят, что все команды алгоритма должны входить в систему команд исполнителя.

Определенность. Команды, образующие алгоритм, должны быть предельно четкими и однозначными, все

г. Пермь

возможности должны быть заранее предусмотрены и ого­ворены. Для заданных исходных данных результат не может зависеть от какой-либо дополнительной инфор­мации извне алгоритма.

Результативность. Правильный алгоритм не мо­жет обрываться безрезультатно из-за какого-либо не­преодолимого препятствия в ходе выполнения. Кроме того, любой алгоритм должен завершиться за конечное число шагов.

Корректность. Решение должно быть правильным для любых допустимых исходных данных.

Массовость. Алгоритм имеет смысл разрабатывать только в том случае, когда он будет применяться много­кратно для различных наборов исходных данных.

Исполнитель — фундаментальное понятие информа­тики. Оно входит в определение алгоритма.

Исполнители алгоритмов необычайно разнообразны. Исполнителем словесных инструкций (алгоритмов) яв­ляется человек. Многие окружающие нас автоматические устройства тоже действуют в соответствии с определен­ными алгоритмами (выключающийся по достижении определенной температуры воды электрический чайник, турникет в метро, современная многопрограммная сти­ральная машина и многие другие). Компьютер тоже яв­ляется исполнителем, возможности которого необычай­но широки.

Каковы наиболее важные черты исполнителей?

Во-первых, состояние каждого исполнителя описыва­ется определенными характеристиками. Полный набор характеристик, описывающий состояние исполнителя, и обстановка, в которой он действует, принято называть средой данного исполнителя.

Во-вторых, любой исполнитель имеет собственный строго определенный набор команд. В учебниках его обычно называют системой команд исполнителя, или сокращенно СКИ. Исполнитель не способен выполнить ни одной команды, которая не попадает в его СКИ, даже если введенная команда отличается от существую­щей всего лишь единственной неправильно написанной буквой.

Но и синтаксически правильная команда при некото­рых условиях не может быть выполнена. Например, не­возможно произвести деление, если делитель равен нулю, или нельзя осуществить команду движения вперед, когда робот уперся в стену. Отказ в подобной ситуации можно сформулировать как "не могу" (в отличие от "не пони­маю" в случае синтаксической ошибки в записи коман­ды). Следовательно, каждая команда в СКИ должна иметь четко оговоренные условия ее выполнения; все случаи аварийного прерывания команды из-за нарушения этих условий должны быть тщательно оговорены.

Третьей важной особенностью исполнителей является наличие различных режимов его работы; перечень режи­мов у каждого исполнителя, естественно, свой. Для боль­шинства учебных исполнителей особо выделяют режимы непосредственного и программного управления1. В первом случае исполнитель ожидает команд от человека и каждую немедленно выполняет. Во втором исполнителю сначала задается полная последовательность команд (программа), а затем он исполняет ее в автоматическом режиме. Боль­шинство исполнителей могут работать в обоих режимах.

И в заключение небольшое замечание по последней час­ти вопроса. Если внимательно проанализировать свойства алгоритмов, то становится очевидным, что для выполнения алгоритма вовсе не требуется ею понимание, а правиль­ный результат может быть получен путем формального и чисто механического следования алгоритму. Отсюда выте­кает очень важное практическое следствие: поскольку осоз­навать содержание алгоритма не требуется, его исполнение вполне можно доверить автомату или ЭВМ. Таким обра­зом, составление алгоритма является обязательным этапом автоматизации любого процесса. Как только разработан алгоритм, машина может исполнять его лучше человека.

Желательно изложить

Термин "алгоритм" имеет интересное историческое происхождение. В IX веке великий узбекский математик аль-Хорезми разработал правила арифметических действий над десятичными числами, которые в Европе стали назы­вать "алгоризмами". Впоследствии слово трансформиро­валось до известного нам сейчас вида и, кроме того, рас­ширило свое значение: алгоритмом стали называть любую последовательность действий (не только арифметических), которая приводит к решению той или иной задачи.

Помимо простейших "бытовых" алгоритмов, можно выделить еще три крупных разновидности алгоритмов: вычислительные, информационные и управляющие. Пер­вые, как правило, работают с простыми видами данных (числа, векторы, матрицы), но зато процесс вычисления может быть длинным и сложным. Информационные ал­горитмы, напротив, реализуют сравнительно небольшие процедуры обработки (например, поиск элементов, удов­летворяющих определенному признаку), но для больших объемов информации. Наконец, управляющие алгорит­мы непрерывно анализируют информацию, поступающую от тех или иных источников, и выдают результирующие сигналы, управляющие работой тех или иных устройств.

Компьютер имеет не только собственную систему команд, но и свой алгоритм работы. Рассмотрим подроб­нее, как он выполняет отдельные операции и как реали­зуется вся программа в целом.

Каждая программа состоит из отдельных машинных команд. Каждая машинная команда, в свою очередь, делится на ряд элементарных унифицированных состав-

1 Аналогичные режимы издавна существовали в языке Бейсик, где строка без номера немедленно исполнялась интерпретатором, а с номером — заносилась в память для последующего исполне­ния; нечто похожее существует и в более поздних версиях под MS-DOS, реализованных в виде компиляторов.

ных частей, которые принято называть тактами (пом­ните термин "тактовая частота процессора" ? — он про­исходит именно отсюда!). В зависимости от сложности команды, она может быть реализована за разное коли­чество тактов.

При выполнении каждой команды ЭВМ проделывает определенные стандартные действия, описанные ниже.

1. Согласно содержимому счетчика адреса команд (спе­циального регистра, постоянно указывающего на ячейку памяти, в которой хранится следующая команда) считы­вается очередная команда программы.

2. Счетчик команд автоматически изменяется так, что­бы в нем содержался адрес следующей команды. В про­стейшем случае для этой цели достаточно к текущему значению счетчика прибавить некоторую константу, оп­ределяющуюся длиной команды.

3. Считанная операция расшифровывается, извлека­ются необходимые данные, над ними выполняются тре­буемые действия и, если это предусмотрено операцией, производится запись результата в ОЗУ.

4. Все описанные действия циклически повторяются с п. 1.

Рассмотренный основной алгоритм работы ЭВМ по­зволяет шаг за шагом выполнить хранящуюся в ОЗУ про­грамму.

Примечания для учителей

Данный вопрос по сравнению с экзаменом 9-го класса объединяет два билета — об алгоритмах и об исполните­лях. Поэтому в конце данных материалов вы увидите две ссылки на предыдущие публикации.

В отличие от экзамена в 9-м классе, выпускников мож­но с некоторой осторожностью спрашивать не о конк­ретном исполнителе, но об их общих свойствах. Об осто­рожности говорю потому, что умение обобщать есть до­статочно сложный навык, и, к сожалению, в окружаю­щей нас повседневной жизни, где логика видна все мень­ше, он развивается все слабее и слабее.

Возможно, не все учителя считают нужным излагать материал об основном алгоритме работы ЭВМ. Тем не менее, обосновывая формальность исполнения програм­мы, о нем желательно сказать.

Примечания для учеников

Вопрос о свойствах алгоритма имеет фундаментальное значение в курсе информатики любого уровня. Поэтому при подготовке данного вопроса мы рекомендуем зау­чить названия всех свойств2. В то же время объяснение всех свойств, как обычно, необходимо разобрать и до­полнить примерами.

При подготовке вопроса обязательно повторите осо­бенности и систему команд исполнителей и языков про­граммирования, которые вы изучали на уроках. Сопос­тавьте эти сведения с приведенным выше материалом и подберите примеры, которые вы включите в свой экза­менационный ответ.

2 Б порядке исключения, так как обычно, напротив, всегда при­зывали к осмысленному запоминанию материала, а не заучиванию

Готовимся к экзамену по информатике

Е.А. Еремин, В.И. Чернатынский, А.П. Шестаков,

г. Пермь

Продолжение. См. № 10—15/2004

БИЛЕТ № 15

1. Алгоритмическая структура "ветвление". I Команда ветвления. Примеры полного и неполного | ветвления.

2. Двоичное кодирование текстовой информации, i Различные кодировки кириллицы.

3. Практическое задание. Формирование запроса I на поиск данных в среде системы управления база- | ми данных.

1. Алгоритмическая структура "ветвление". Команда ветвления. Примеры полного и неполного ветвления

Базовые понятия

Алгоритм, ветвление, условие, полное ветвление и неполное ветвление.

Обязательно изложить

При составлении алгоритмов решения разнообраз­ных задач часто бывает необходимо обусловить те или иные предписания, т.е. поставить их выполнение в зависимость от результата, который достигается на определенном шаге исполнения алгоритма. Например, алгоритм нахождения корней квадратного уравнения с помощью компьютера должен содержать проверку знака дискриминанта. Лишь в том случае, когда диск­риминант положителен или равен нулю, можно про­водить вычисление корней. Алгоритм перемещения в заданный пункт по улицам города обязательно дол­жен содержать предписание проверки сигналов свето­форов на пересечениях улиц, поскольку они обуслов­ливают движение на перекрестках. Можно привести еще много примеров подобных ситуаций, которые не имеют решения в рамках структуры "следование". По этой причине в теории алгоритмов наряду со "следо­ванием" предлагается вторая базовая структура, назы­ваемая "ветвление". Эта структура предполагает фор­мулировку и предварительную проверку условий с пос­ледующим выполнением тех или иных действий, реа­лизуя альтернативный выбор.

В словесной форме представления алгоритма "ветв­ление" реализуется в виде команды:

ЕСЛИ <АВ> то <Серия 1> ИНАЧЕ <Серия2>

Здесь <ЛВ> — это логическое выражение, < Серия 1> — описание последовательности действий,

которые должны выполняться, когда <ЛВ> прини­мает значение ИСТИНА, < Серия 2> — описание пос­ледовательности действий, которые должны выпол­няться, когда <ЛВ> принимает значение ЛОЖЬ. Любая из серий может быть пустой. В этом случае ветвление называется неполным. Каждая серия мо­жет, в свою очередь, содержать команду ветвления, что позволяет реализовать не только альтернативный выбор действий.

Если для представления алгоритма используется блок-схема, структура "ветвление" изображается так:

Полное ветвление Неполное ветвление

В языке программирования Turbo Pascal структура ветвления изображается оператором:

IF <ЛВ> THEN <БЛОК1> ELSE <БлОк2>;

Здесь <Бл<ж1> и <Блок2> — последовательности операторов языка Turbo Pascal, заключенные в опера­торные скобки BEGIN . . END.

Рассмотрим пример использования структуры "вет­вление". Одной из типичных задач информатики яв­ляется задача сортировки: упорядочения по возраста­нию или убыванию величин порядкового типа. Соста­вим алгоритм и программу сортировки списка из двух фамилий, используя неполное ветвление.

Алгоритм

/ *'Y /

i Г

Конец

2004 № 17 ИНФОРМАТИКА

Программа

PROGRAM SORT;

VAR X,Y,C: STRING;

BEGIN

WRITELN (-'Введи две фамилии'); READLN(X,Y); IF X > Y THEN BEGIN

С := X; X := Y; Y := С END;

WRITELN('После сортировки'); WRITELN (X); WRITELN (Y) END.

Рассмотрим теперь в качестве примера использова­ния полного ветвления алгоритм и программу вычис­ления отношения двух чисел с блокировкой деления на ноль и выводом соответствующего сообщения на экран монитора.

Алгоритм

Программа

PROGRAM REL; VAR А,В,С: REAL; BEGIN

WRITELN('Введи 2 числа'); READLN(А,В); IF В О О THEN

BEGIN

С := А/В; WRITELN('С = ',С) END ELSE

WRITELN('ДЕЛЕНИЕ HA 0') END.

Ссылка на материалы вопроса

1. Угринович Н. Информатика и информационные технологии. Учебное пособие для 10—11-х классов. Углубленный курс. М.: Лаборатория Базовых Знаний, 2000, 440 с.

2. Семакин И., Залогова А., Русаков С., Шестакова Л. Базовый курс для 7—9-х классов. М.: Лаборатория Базовых Знаний, 2001, 384 с.

2. Двоичное кодирование текстовой информации. Различные кодировки кириллицы

Базовые понятия

Код, кодирование, двоичное кодирование, символ, код символа, кодировочная таблица.

Обязательно изложить

Если каждому символу какого-либо алфавита сопос­тавить определенное целое число, то с помощью дво­ичного кода можно кодировать и текстовую информа­цию. Для хранения двоичного кода одного символа может быть выделен 1 байт = 8 бит. Учитывая, что каждый бит принимает значение 0 или 1, количество их возможных сочетаний в байте равно 28 = 256. Зна­чит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их по­мощью 256 различных символов. Такое количество символов вполне достаточно для представления тек­стовой информации, включая прописные и заглавные буквы русского и латинского алфавита, цифры, знаки, псевдографические символы и т.д. Кодирование зак­лючается в том, что каждому символу ставится в соот­ветствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер — по их коду. Важ­но, что присвоение символу конкретного кода — это вопрос соглашения, которое фиксируется в кодовой таблице. Кодирование текстовой информации с помо­щью байтов опирается на несколько различных стан­дартов, но первоосновой для всех стал стандарт ASCII (American Standard Code for Information Interchange), разработанный в США в Национальном институте ANSI (American National Standards Institute). В систе­ме ASCII закреплены две таблицы кодирования — базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255. Первые 33 кода (с 0 до 32) соответствуют не символам, а опера­циям (перевод строки, ввод пробела и т.д.). Коды с 33-го по 127-й являются интернациональными и со­ответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препина­ния. Коды с 128-го по 255-й являются национальны­ми, т.е. в национальных кодировках одному и тому же коду соответствуют различные символы.

В языках, использующих кириллический алфавит, в том числе русском, пришлось полностью менять вто­рую половину таблицы ASCII, приспосабливая ее под кириллический алфавит. В частности, для представле­ния символов кириллицы используется так называе­мая "альтернативная кодировка".

В настоящее время существует несколько различ­ных кодовых таблиц для русских букв (КОИ-8,

2004 № 17 ИНФОРМАТИКА

СР-1251, СР-866, Mac, ISO), поэтому тексты, создан­ные в одной кодировке, могут неправильно отобра­жаться в другой.

После появления ОС Windows от фирмы Microsoft выяснилось, что альтернативная кодировка по некото­рым причинам для нее не подходит. Передвинув рус­ские буквы в таблице (появилась возможность — ведь псевдографика в Windows не требуется), получили кодировку Windows 1251 (Win-1251).

В настоящее время все большее число программ начинает поддерживать шестнадцатибитовый стандарт Unicode, который позволяет кодировать практически все языки и диалекты жителей Земли в силу того, что кодировка включает в себя 65 536 различных двоич­ных кодов.

Международная организация по стандартизации (International Organization for Standardization, или IOS) разработала свой код, способный соперничать с Unicode. Здесь для кодирования символов использует­ся комбинация из 32 бит.

Желательно изложить

Кодирование и шифрование текста — исторический подход.

Перевод текста из одной кодировки в другую.

Ссылка на материалы вопроса

"Информатика" № 12, 2003, с. 3 — 5.

3. Практическое задание. Формирование запроса на поиск данных в среде системы управления базами данных

Принципы составления задания

Для организации запросов нужно предложить гото­вую базу данных, не требуя ее заполнения. Запросов должно быть несколько', причем их можно дифферен­цировать по сложности для отметок "удовлетворитель­но', "хорошо", "отлично".

Учащиеся должны продемонстрировать умение соз­давать как простые запросы, так и с использованием логических операций и некоторых простейших функ­ций изучаемой СУБД.

Примеры заданий

В качестве вариантов заданий можно использовать материалы задачника-практикума "Информатика. За­дачник-практикум в 2 т." / Под ред. И.Г. Семакина, Е.К. Хеннера. Т. 1, 2. М.: Лаборатория Базовых Зна­ний, 1999.

Примеры запросов можно посмотреть в статье: Брыз­галов Е.В., Шестаков А.П. Уроки по Access // Инфор­матика и образование № 7, 2000, с. 18—29.

Ссылка на материалы

"Информатика" № 16, 2002, с. 13—22.

БИЛЕТ № 16

1. Алгоритмическая структура "цикл". Циклы со I счетчиком и циклы по условию

I 2. Двоичное кодирование графической информа- I | ции. Растр. Пиксель. Глубина цвета

I 3. Задача на определение количества информа- I I ции и преобразование единиц измерения количест- i . ва информации1. Алгоритмическая структура "цикл". Циклы со счетчиком и циклы по условию

Базовые понятия

Цикл — последовательность команд (серия, тело цикла), которая может исполняться многократно для разных значений данных до удовлетворения некото­рого условия.

Циклы с неопределенным количеством повторений (по условию) и с параметром (счетчиком).

Обязательно изложить

Цикл является одним из трех базовых алгоритми­ческих элементов, на основе которых, согласно тео­рии, можно построить любой алгоритм. Значение цикла в практическом программировании необычайно вели­ко — как правило, программа пишется лишь тогда, когда те или иные действия требуется совершить мно­гократно для различных значений данных. (В самом деле, если необходимо провести однократное вычис­ление по формуле разумной сложности, это быстрее и проще сделать на калькуляторе.)

Циклы бывают двух принципиально различных ти­пов: с предопределенным и с заранее неизвестным числом повторений. В первом случае из условия задачи известно, сколько раз цикл будет выполнен: напри­мер, найти сумму первых десяти членов числового ряда. Во втором — количество повторений будет зависеть от результатов вычислений и поэтому определится толь­ко в ходе работы программы: примером может слу­жить нахождение суммы ряда с заданной точностью, когда вычисления прекращаются, если очередное сла­гаемое не превышает требуемой погрешности. Внима­тельно сравните два приведенных выше примера, и вы, несомненно, почувствуете разницу.

Для полноты классификации следует добавить, что цикл с условием, в свою очередь, тоже может реализо­вываться двумя способами. В первом варианте в начале цикла поверяется условие, а затем, если оно истинно, выполняются операторы цикла и происходит возврат на новую проверку; поскольку здесь условие предше­ствует содержимому цикла, то в литературе его при­нято называть циклом с предусловием. Во втором варианте, напротив, сначала цикл выполняется, а затем

проверяется условие его завершения: в случае ложно­сти цикл повторяется (иначе заканчивается); такой цикл, когда условие ставится после операторов содержимого, называют "с постусловием". Чаше всего только одна из названных разновидностей цикла наилучшим образом подходит к конкретной задаче. Например, если вы со­бираетесь удалить пробелы, стоящие в начале строки, то, скорее всего, выберете цикл с предусловием, потому что надо сначала убедиться, что пробел имеется, и толь­ко затем его удалять (глупо поступать наоборот — сна­чала удалять, а потом проверять, стоило ли это делать, хотя в практической жизни такая, с позволения ска­зать, логика порой встречается...). Зато ввод текста до точки трудно построить иначе как с постусловием, по­скольку сначала требуется ввести очередной символ и только потом сравнивать его с точкой.

Часто одни и те же действия требуется выполнить для различных значений параметра: типичная ситуа­ция — подставить числа от 1 до 10 в какую-нибудь формулу. Для решения такого типа задач лучше всего подойдет цикл с параметром, который возьмет на себя автоматическое изменение переменной цикла и ее сравнение с окончательным значением.

Завершая ответ, необходимо продемонстрировать все перечисленные виды циклов на том языке, который использовался на уроках (блок-схема, алгоритм для исполнителя, язык программирования). По понятным причинам мы не можем здесь предугадать все воз­можности.

Желательно изложить

Циклы с неопределенным количеством повторений, как правило, не имеют каких-то существенных осо­бенностей реализации в различных языках. А вот цикл с параметром (FOR), напротив, часто обладает теми или иными специфическими свойствами. Например, в языке Бейсик, где параметром цикла может быть только числовая переменная (но зато любого типа), разрешается цикл от 0 до 1 с дробным шагом изме­нения 0.1. В Паскале параметр цикла не обязательно числовой, но зато он должен являться порядковым (иметь конечный упорядоченный набор допустимых значений). Таким образом, можно строить циклы по целым, символьным (CHAR), логическим, заданным перечнем своих значений и некоторым другим типам переменных, но зато запрещено использование веще­ственных значений1. Фактически в Паскале при каж­дом новом исполнении цикла берется или следующее, или предыдущее в используемом типе значение. В языке Си цикл FOR еще более интересный. Его заголовок фактически содержит три части: действия по инициа­лизации, действия по проверке окончания цикла и,

1 Хотя бы потому, что для вещественных чисел не определено понятие "следующий": в самом деле, какое значение следует пос­ле 1.1 - 1.2, 1.11 или 1.101?

наконец, действия после каждой итерации. Характер­ной особенностью является возможность иметь в каж­дой части произвольное количество операторов, вклю­чая вариант их отсутствия. Например,

for (i = 0, j = n - 1; i < n; i++, j —) a[i] = a[j];

Настолько общий подход позволяет вообще напи­сать цикл без содержимого: например, сам оператор организации цикла

for (s=0, i = 1; i < 11; s=s+i, i=i+l) уже вычисляет сумму первых 10 натуральных чисел.

Примечание. Ярые приверженцы Си последние два опе­ратора никогда не напишут иначе, чем s += i, i++, давая возможность компилятору составить чуть более эффективную программу. Но мне хотелось сделать текст более удобочитае­мым для тех, чье мышление не связано с конкретными комби­нациями значков.

Разумеется, рассказанный в предыдущем абзаце материал не предназначен для включения в ответ це­ликом. Просто подчеркнуто, что ученику желательно раскрыть особенности цикла FOR в том языке, кото­рый он изучал (а приведенные примеры просто ука­зывают те места, где эти особенности надо искать).

И в заключение еще одно важное с практической точки зрения замечание. При некорректной организации не­которых циклов может возникнуть эффект так называе­мого "зацикливания", когда действия внутри цикла не могут создать условия, требующиеся для его заверше­ния. Следует всячески избегать подобных ситуаций пу­тем тщательного анализа условий работы цикла.

Примечание для учителей

В литературе обычно используется термин "цикл с параметром", а не "цикл со счетчиком".

Примечание для учеников

Как обычно, при подготовке вопроса необходимо продумать и подобрать на изученном языке примеры циклических алгоритмов. Вне зависимости от языка при ответе желательно использовать блок-схемы.

2. Двоичное кодирование графической информации. Растр. Пиксель. Глубина цвета

Базовые понятия

Растр — специальным образом организованная со­вокупность точек, на которой представляется изобра­жение.

Пиксель — логический элемент изображения.

Обязательно изложить

Людям издавна хотелось зафиксировать окружаю­щие их предметы и события в виде наглядных графи­ческих изображений. Свидетельством этому являются рисунки со сценами охоты на стенах пещер, планы местности и многое другое. Важными техническими шагами в данном направлении явились изобретение

практической деятельности (ссылка есть выше) необ­ходимо проследить все этапы решения содержатель­ной задачи — с исследования моделируемой предмет­ной области и постановки задачи до интерпретации результатов, полученных в ходе вычислительного экс­перимента. Для освоения полной технологической це­почки при решении конкретных задач следует выде­лять и подчеркивать соответствующие этапы работы.

Ссылка на материалы вопроса

"Информатика" № 14, 2003, с. 3 — 8.

2. Двоичное кодирование звуковой информации. Глубина кодирования и частота дискретизации

Базовые понятия

Дискретная и непрерывная форма представления информации. Аналого-цифровой и цифро-аналоговый преобразователи.

Дискретизация звукового сигнала по времени и ам­плитуде.

Теорема Найквиста для выбора частоты дискрети­зации звука.

Обязательно изложить

Звуковые сигналы в окружающем нас мире нео­бычайно разнообразны. Для их записи с целью пос­ледующего воспроизведения необходимо как можно точней сохранить форму кривой зависимости интен­сивности звука от времени. При этом возникает одна очень важная и принципиальная трудность: звуковой сигнал непрерывен, а компьютер способен сохранить в памяти пусть очень большое, но конечное число дискретных величин. Следовательно, в процессе записи звуковая информация должна быть "оцифрована", т.е. из аналоговой непрерывной формы переведена в циф­ровую дискретную. Данную функцию выполняет спе­циальный блок, входящий в состав звуковой карты, который называется аналого-цифровой преобразова­тель — АЦП.

Каковы основные принципы работы АЦП?

Во-первых, он производит дискретизацию записы­ваемого звукового сигнала по времени. Это означает, что измерение уровня интенсивности звука ведется не непрерывно, а, напротив, в определенные фиксиро­ванные моменты времени (удобнее, разумеется, через равные временные промежутки). Частоту, характери­зующую периодичность измерения звукового сигнала, принято называть частотой дискретизации. Вопрос о ее выборе далеко не праздный, и ответ в значитель­ной степени зависит от спектра сохраняемого сигна­ла: существует специальная теорема Найквиста, соглас­но которой частота "оцифровки" звука должна как минимум в 2 раза превышать максимальную частоту, входящую в состав спектра сигнала.

Во-вторых, АЦП производит дискретизацию амп­литуды звукового сигнала. При измерении имеется "сетка" стандартных уровней (например, 256 или 65 536 — это количество характеризует глубину коди­рования) , и текущий уровень измеряемого сигнала ок­ругляется до ближайшего из них.

Итак, в ходе оцифровки звука мы получаем поток целых чисел, представляющих собой стандартные ам­плитуды сигналов через равные промежутки времени.

Изложенный метод преобразования звуковой инфор­мации для хранения в памяти компьютера в очередной раз подтверждает тезис о том, что любая информация для хранения в компьютере приводится к цифровой форме и затем переводится в двоичную систему. Те­перь мы знаем, что и звуковая информация не является исключением из этого фундаментального правила.

Остается рассмотреть обратный процесс — воспро­изведение записанного в компьютерный файл звука. Здесь имеет место преобразование в противополож­ном направлении — из дискретной цифровой формы представления сигнала в непрерывную аналоговую, поэтому вполне естественно соответствующий узел компьютерного устройства называется ЦАП — циф­ро-аналоговый преобразователь. Процесс реконструк­ции первоначального аналогового сигнала по имею­щимся дискретным данным нетривиален, поскольку никакой информации о форме сигнала между сосед­ними отсчетами не сохранилось. В разных звуковых картах для восстановления звукового сигнала могут использоваться различные способы. Наиболее нагляд­ный и понятный из них состоит в том, что по имею­щимся точкам рассчитывается степенная функция, проходящая через заданные точки, которая и прини­мается в качестве формы аналогового сигнала.

Желательно изложить

Из курса физики известно, что звук есть колебания среды. Чаще всего средой является воздух, но это сов­сем не обязательно. Например, звук прекрасно рас­пространяется по поверхности земли: именно поэто­му в приключенческих фильмах герои, стараясь услы­шать шум погони, прикладывают ухо к земле. Напро­тив, существует весьма эффектный школьный физи­ческий опыт, который показывает, что при откачива­нии воздуха мы перестаем слышать звук находящего­ся под герметичным колпаком звонка. Важно также подчеркнуть, что существует определенный диапазон частот, к которому принадлежат звуковые волны: при­мерно от нескольких десятков герц до величины не­много более 20 кГц1. Значения этих границ определя­ются возможностями человеческого слуха.

1 Интересно сопоставить характерные звуковые частоты с так­товой частотой типового микропроцессора — различие составля­ет примерно 6 порядков, что говорит об огромных возможностях компьютера в обработке звуковой информации.

БИЛЕТ № 17

1. Технология решения задач с помощью компьютера! | (моделирование, формализация, алгоритмизация, програм-1 мирование). Показать на примере задачи (математиче­ской, физической, экономической, экологической). ' 2. Двоичное кодирование звуковой информации. I | Глубина кодирования и частота дискретизации.3. Задача. Составление таблицы истинности для ло-| I гической функции, содержащей операции отрицания, (инверсию), умножения (конъюнкцию), сложения

I (дизъюнкцию).

1. Технология решения задач с помощью компьютера (моделирование, формализация, алгоритмизация, программирование). Показать на примере задачи (математической, физической, экономической, экологической)

Базовые понятия

Модель, идеальная и материальная модель, моделиро­вание, компьютерное моделирование, математическое моделирование, этапы компьютерного моделирования, формализация, компьютерный эксперимент, алгоритм, программа, тестирование и отладка программы.

Обязательно изложить

В решении любой содержательной задачи с исполь­зованием компьютера можно выделить ряд этапов.

Первый этап — определение целей моделирования. Основные из них таковы:

понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (согласно этой цели моделирования получают описательную, или дес­криптивную, модель);

научиться управлять объектом (или процессом) и определить наилучшие способы управления при задан­ных целях и критериях (оптимизационные и много­критериальные модели);

научиться прогнозировать прямые и косвенные последствия воздействия на объект (игровые и ими­тационные модели).

После этого переходят к формализации объекта (процесса), результатом которой и будет в нашем слу­чае модель (математическая или информационная).

Содержательное описание процесса обычно самостоя­тельного значения не имеет, а служит лишь основой для дальнейшей формализации этого процесса — по­строения формализованной схемы и модели процесса.

Формализованная схема является промежуточным звеном между содержательным описанием и моделью и разрабатывается в тех случаях, когда из-за сложнос­ти исследуемого процесса переход от содержательного описания к модели оказывается невозможным.

Моделирование — процесс построения формальной модели реального явления и ее использование в целях исследования моделируемого явления.

Когда модель сформулирована, выбирается метод и инструментальное средство ее исследования. В зависи­мости от формализованной постановки задачи в каче­стве такого средства может выступать либо пакет при­кладных программ, либо собственноручно составлен­ная программа.

Если в качестве средства решения задачи' выступает тот или иной язык программирования (впрочем, это актуаль­но и для математических пакетов), следующий этап — разработка алгоритма и составление программы для ЭВМ (понятия алгоритма и программы подробно рассматри­ваются в билете 13, вопрос 1; а основы алгоритмическо­го программирования — в билете 2, вопрос 2).

После составления программы решаем с ее помо­щью простейшую тестовую задачу с целью устранения грубых ошибок.

Если результаты соответствуют экспериментальным данным или нашим интуитивным представлениям, проводят расчеты по программе, данные накаплива­ются и соответствующим образом обрабатываются. Чаще удобной для восприятия формой представления результатов являются не таблицы значений, а графи­ки, диаграммы. Иногда численные значения пытают­ся заменить аналитически заданной функцией, вид которой определяет экспериментатор. Результаты ана­лиза и обработки полученных данных в конечном итоге попадают в отчет о проделанном эксперименте.

Примеры решения содержательных задач из раз­личных областей см.: Шестаков А.П. Профильное обу­чение информатике в старших классах средней школы (10—11-е классы) на основе курса "Компьютерное математическое моделирование" (КММ) // "Инфор­матика" № 34, 36, 38, 40, 42, 44, 46, 48/2002.

Желательно изложить

История развития технологии решения задач с ис­пользованием ЭВМ.

Примечание для учителей

Чаще всего задачи на программирование предлага­ются учащимся уже в формализованном виде. На при­мере ряда моделей из различных областей науки и

Для высококачественного воспроизведения звука верхнюю границу обычно с некоторым запасом при­нимают равной 22 кГц. Отсюда из теоремы Найквис-та следует, что частота звукозаписи в таких случаях (например, при записи музыкальных компакт-дисков) должна быть не ниже 44 кГц2. Часто такое высокое качество не требуется, и частоту дискретизации мож­но значительно снизить. Например, при записи речи вполне достаточно частоты дискретизации 8 кГц. За­метим, что результат при этом получается хотя и не блестящий, но легко разборчивый3 — вспомните, как вы слышите голоса своих друзей по телефону.

При оцифровке звука напрашивается линейная за­висимость между величиной входного сигнала и номе­ром уровня. Иными словами, если громкость возрас­тает в 2 раза, то интуитивно ожидается, что и соответ­ствующее ему число возрастет вдвое. В простейших случаях так и делается, но это не самое лучшее реше­ние. Причина в том, что в широком диапазоне гром­кости звука человеческое ухо не является линейным. Например, при очень громких звуках (когда "уши закладывает" ) увеличение или уменьшение интенсив­ности звука почти не дает эффекта, в то время как при восприятии шепота очень незначительное паде­ние уровня может приводить к полной потере разбор­чивости. Поэтому при записи цифрового звука, осо­бенно при 8-битном кодировании, часто используют различные неравномерные распределения уровней громкости, в основе которых лежит логарифми­ческий закон (ц-law, A-law и другие).

Примечание для учителей

Мы рассмотрели процессы преобразования ес­тественных звуков к виду, пригодному для хране­ния в компьютере, и последующего их восстанов­ления при воспроизведении. Разумеется, не следует требовать от учеников на экзамене большего. Тем не менее назовем некоторые интересные вопросы, связанные с компьютерной обработкой звуковой информации, которые полезно знать любому гра­мотному пользователю. Это прежде всего сжатие (кто ни разу не использовал файлы МРЗ?), MIDI-запись музыки в виде необычайно компактных "нотных" команд для инструментов, форматы звуковых файлов и их осо­бенности, возмолшости компьютеров в редактировании фонограмм (фильтрация, удаление помех и т.п.) и дру­гие не менее важные и интересные темы.

Примечание для учеников

Автор советует при подготовке к экзамену прочи­тать полный материал вопроса, снабженный интерес­ными примерами и иллюстрациями.

2 Обычно используется значение 44 032 Гц, которое делится нацело на 256.

3 Известно, что высокие частоты в основном влияют на "окрас­ку" (тембр) человеческого голоса.

Ссылка на материалы по вопросу

Подробные материалы опубликованы в "Информа­тике" № 14, 2003. Электронная версия имеется на сайте редакции по адресу http:/ /inf.lsepteniber.ru/ eremin/emc/theory/info/Ъ17__2.html.

По поводу непрерывной и дискретной информации можем порекомендовать почитать ответ на "старый вопрос 3 билета 10, опубликованный в "Информати­ке" № 14, 2003 (также доступно в Интернете по ссыл­ке из списка литературы предыдущего вопроса).

3. Задача. Составление таблицы истинности для логической функции, содержащей операции отрицания (инверсию), умножения (конъюнкцию), сложения (дизъюнкцию)

Теоретический материал к этому заданию содер­жится в билете № 23, вопрос 2. Тему предлагаемых практических заданий можно сформулировать так: до­казать ряд основных законов алгебры логики путем построения таблицы истинности для обеих частей ра­венств, которые эти законы выражают.

Вариант 1. Доказать распределительный закон:

~Х и YZ = (X u F) • (~Х u Z)

Решение. Построим таблицу истинности, придавая возможные значения логическим переменным (1 — ис­тина, 0 — ложь) и пользуясь соглашением о приоритете логических операций (НЕ, И, ИЛИ в порядке БИЛЕТ № 18 I

I 1. Программные средства и технологии обработ-| ки текстовой информации (текстовый редактор, | текстовый процессор, редакционно-издательские i системы).

2. Алгоритмическая структура

3. Задача. Перевод десятичных чисел в двоичную,' I восьмеричную, шестнадцатеричную системы счис-1 | ления

1. Программные средства и технологии обработки текстовой информации (текстовый редактор, текстовый процессор, редакционно-издательские системы)

Базовые понятия

Текстовый редактор, текстовый процессор, настоль­ная издательская система, документ, основные элементы текстового документа, форматы текстовых документов.

Обязательно изложить

Текстовые редакторы (процессоры} относятся к программному обеспечению общего назначения, они предназначены для создания, редактирования, форма­тирования, сохранения во внешней памяти и печати текстовых документов. Обычно текстовыми редакто­рами принято называть программы, выполняющие про­стейшие операции по редактированию текста, а про­цессорами — программы, обладающие расширенны­ми по сравнению с редакторами средствами для ком­пьютерной обработки текста. Современные текстовые процессоры по своим функциональным возможностям приближаются к издательским системам — пакетам программ, предназначенным для верстки газет, жур­налов, книг.

Основные функции текстовых процессоров:

создание документов;

редактирование;

сохранение документов во внешней памяти (на дисках) и чтение из внешней памяти в оперативную;

форматирование документов;

печать документов;

составление оглавлений и указателей в документе;

создание и форматирование таблиц;

внедрение в документ рисунков, формул и др.;

проверка пунктуации и орфографии.

Основными элементами текстового документа яв­ляются: символ, слово, строка, предложение, абзац, страница, документ.

Обычно текстовые процессоры предусматривают две основные операции изменения формата доку­мента:

форматирование произвольной последовательности символов (от одного до любого количества, чаще всего эта последовательность предварительно выделяется);

форматирование абзацев.

При форматировании символов можно изменить:

шрифт;

начертание шрифта (полужирный, курсив, под­черкнутый);

размер шрифта;

межсимвольный интервал;

применить к символам эффекты (нижний, верх­ний индекс, малые строчные буквы и т.д.).

При форматировании символов можно изменить:

способ выравнивания строк абзаца (влево, впра­во, по центру, по ширине);

отступ в красной строке абзаца;

ширину и положение абзаца на странице;

межстрочное расстояние (интерлиньяж) и рас­стояние между соседними абзацами;

создать специальные абзацы (маркированные или нумерованные списки и т.д.).

Наиболее распространенные форматы текстовых файлов: текстовый, Rich Text Format, текст DOS, до­кумент Word, документ HTML.

Настольные компьютерные издательские системы широко используются в различных сферах производ­ства, бизнеса, политики, науки, культуры, образова­ния и др. С их помощью верстаются бюллетени, рек­ламные проспекты, газеты, книги и др.

Настольные издательские системы представляют собой комплекс аппаратных и программных средств, предназначенных для компьютерного набора, верст­ки и издания текстовых и иллюстративных материа­лов. Отметим, что с аппаратной точки зрения про­фессиональная работа с издательской системой тре­бует прежде всего монитора с достаточно большой диагональю (19—25"), производительного видеоадап­тера с достаточным объемом видеопамяти (порядка 256 Мб — 1 Гб), производительного процессора и объемного жесткого диска. Это связано с тем, что макет чаще всего содержит немало иллюстраций вы­сокого качества, что и требует использования приве­денных выше ресурсов.

Назовем некоторые издательские системы: Express Publisher, Illustrator for Windows, Ventura Publisher, PageMaker, TeX (LaTeX) и др. Первые системы обще­го назначения, последняя предназначена прежде всего для верстки текста с преобладанием математических формул и используется многими научными физико-математическими журналами.

Для обработки изображений с целью внедрения их в текст, сверстанный в издательской системе, приме­няют такие графические пакеты, как CorelDraw, Adobe PhotoShop, и др.

Издательские системы реализованы практически для всех платформ и самых разнообразных операционных систем.

Желательно изложить

Правила компьютерного набора и оформления текстов.

Отличительные черты текстовых процессоров в раз­ных операционных системах.

Дополнительные возможности текстовых процессо­ров как настольных издательских систем.

Кодирование текстовой информации. Кодировочные таблицы. Кодировки кириллицы.

Сканирование и распознавание текстовой инфор­мации.

Ссылка на материалы вопроса

"Информатика" № 14, 2003, с. 3 — 8.

2. Алгоритмическая структура "выбор" Базовые понятия

Оператор выбора (оператор множественного ветв­ления).

Обязательно изложить

Кроме условного оператора, в качестве управляю­щей структуры довольно часто используется опера­тор выбора. Эта алгоритмическая структура позво­ляет переходить на одну из ветвей в зависимости от значения заданного выражения (селектора выбора). Ее особенность состоит в том, что выбор выполняе­мых операторов здесь осуществляется не в зависимо­сти от истинности или ложности логического выра­жения, а является вычислимым. Оператор выбора позволяет заменить несколько условных операторов (в силу этого его еще называют оператором, множе­ственного ветвления).

В алгоритмической структуре "выбор" вычисля­ется выражение /с и выбирается ветвь, значение метки которой совпадает со значением k. После выполне­ния выбранной ветви происходит выход из конст­рукции выбрра (в СН—К в отличие от Turbo Pascal, такой выход не осуществляется, а продолжают вы­полняться последующие операторы, поэтому для при­нудительного завершения оператора выбора приме­нятся оператор break). Если в последовательности нет метки со значением, равным значению выраже­ния /с, то управление передается внешнему операто­ру, следующему за конструкцией выбора (это про­исходит в случае отсутствия альтернативы выбора; если она есть, то выполняется следующий за ней оператор, а уже затем управление передается внеш­нему оператору).

Запись оператора выбора: Turbo Pascal

case k of

Al : серия 1; A2 : серия 2;

AN : серия N; else серия N + 1 end;

C++

switch (k)

{case Al :

case A2 :

серия 1; break; серия 2; break;

case AN : серия N; break; default: серия N + 1;}

Любая из указанных серий операторов может со­стоять как из единственного оператора, так и не­скольких (в этом случае, как обычно, операторы, от­носящиеся к одной метке, должны быть заключены в операторные скобки begin, .end — в Turbo Pascal и {..} -в C++).

Выражение /с здесь может быть любого порядково­го типа (напомним, что к таким типам в языке Pascal относятся все целые типы, boolean, char, перечисля­емый тип, диапазонный тип, базирующийся на любом из указанных выше типов).

Привести примеры задач с использованием опера­тора выбора.

Желательно изложить

Сравнительная характеристика условного операто­ра и оператора выбора.

Примечание для учителей

При изучении темы необходимо показать, какие преимущества имеет данный оператор перед услов­ным, выявить ситуации, когда его целесообразно ис­пользовать.

Ссылка на материалы вопроса

1. "Информатика" № 14, 2003, с. 3 — 8.

2. http://comp-science.narod.ru/Progr/UsljCase.htm.

3. Перевод десятичных чисел в двоичную, восьмеричную, шестнадцатеричную системы счисления.

Теоретический материал к этой задаче содержится в билете № 13, вопрос 2. Примеры перевода с под­робными пояснениями и варианты заданий можно найти на сайте http:\comp-science.narod.ru\ Progr\Syst_Sch.html и в газете "Информатика" № 19, 2002, с. 5—7.

БИЛЕТ № 19

Программные средства и технологии обработки |

| числовой информации (электронные калькуляторы I

| и электронные таблицы). Назначение и принципы i

I работы

2. Событийное объектно-ориентированное про- ,

граммирование. Событийные и общие процедуры.

3. Компьютерные вирусы. Практическое зада- '

I ние. Исследование дискет на наличие вируса с по- I

I мощью антивирусной программы.

1. Программные средства и технологии обработки числовой информации (электронные калькуляторы и электронные таблицы). Назначение и принцип работы

Примечания для учителей

Сегодня хочется начать именно с примечаний, по­скольку у автора текста этого ответа есть серьезные сомнения по поводу того, что именно надо рассказы­вать по данному вопросу. Следовательно, и содержи­мое остальных разделов будет существенным образом зависеть от того, что написано в примечании.

Согласно тексту вопроса, от нас требуется расска­зать о двух технологиях обработки числовой информа­ции на компьютере — на калькуляторе и с помощью электронной таблицы (обращаю ваше внимание на тот факт, что в тексте не содержится ни малейшего намека на существование других технологий даже с помощью традиционного "и т.д."). Подобная поста­новка вопроса мне кажется неудачной как минимум по следующим причинам.

Существуют другие программные средства и тех­нологии, причем не менее эффективные, чем элект­ронные таблицы, позволяющие обрабатывать число­вую информацию на современном компьютере. Тезис об электронной таблице Excel как о вершине обработ­ки числовых данных по крайней мере неубедителен.

Стандартные учебники не обсуждают сформули­рованный вопрос в явном виде. Включать подобного типа вопросы в билеты некорректно как по отноше­нию к ученикам, так и к учителям (откуда им взять информацию для объяснения?!).

Ответ на данный вопрос без литературы с помо­щью самостоятельных рассуждений затруднителен. Например, я честно скажу, что не готов описать прин­цип работы программы-калькулятора в Windows, если только под принципом не понимается описание спо­соба набора чисел и порядка манипуляций при выпол­нении на нем арифметических действий1.

1 Словами "принцип работы программы" обычно принято обо­значать описание внутренней логики устройства программы и методы, которыми она обрабатывает информацию; хотя, конечно, практические приемы использования можно назвать ' принципа­ми работы с программой (знать бы, что именно авторы вопроса имели в виду...).

Итак, как можно поступить в данной ситуации? Возможно несколько путей.

1. Принять максимально простое толкование сфор­мулированного вопроса: есть примитивный калькуля­тор, позволяющий выполнить небольшой объем вы­числений, и есть электронные таблицы, которые дают возможность обработки большого количества чисел по одинаковым формулам.

2. Воспользоваться допустимым правом учителя в разумных пределах варьировать формулировку вопро­са и, убрав упоминание о калькуляторах, оставить тра­диционный и понятный вопрос об электронных таб­лицах как технологии обработки числовой информа­ции, их назначении и принципах работы.

3. Рассмотреть вопрос "в полной постановке", т.е. обсудить основные технологии обработки числовой информации и место электронных таблиц среди них. Материалы можно взять из предыдущей публикации (см. ссылку в конце вопроса).

Примечание. Как довольно отчетливо показала дискуссия о новом стандарте школьного, курса информатики, опубликован­ная недавно в газете, те, кто формулирует стратегические доку­менты по содержанию курса, не особенно стремятся учитывать возможности и мнения учителей, которые эти документы воп­лощают в жизнь. По-моему, данный вопрос билета является одним из примеров такою сорта (будет и еще один подобный вопрос в билете 25). К счастью, в случае, когда формулировка отдельного вопроса билета из-за некоторой двусмысленности или непродуманности недостаточно ясна, учителя имеют возмож­ность внести некоторые уточнения, которые сделают вопрос более понятным и подходящим для реальных учеников.

Базовые понятия

Технологии обработки числовой информации на современном компьютере. Электронные таблицы.

Обязательно изложить

ЭВМ была создана для обработки числовой информа­ции. Более чем полувековое совершенствование вычисли­тельной техники многократно увеличило ее возможности.

Бытующее мнение о том, что "умная" машина спо­собна правильно выполнить любые вычисления и сде­лать это с абсолютной точностью, не всегда оказывает­ся верным. Нежелание (а порой и неумение) учиты­вать применимость тех или иных методов к решаемой задаче и тем более их оптимальность, оценить досто­верность полученных результатов на практике может приводить к конфузам. Например, о том, сколько зна­ков в выданном компьютером ответе являются досто­верными, задумываются немногие: "машина не может ошибаться!" — единодушно (и в чем-то даже правиль­но) в один голос заявляют и школьник, и бухгалтер, и экономист, добросовестно используя все выведенные на экран цифры числа. Тем не менее установить количе­ство отображаемых знаков после запятой в современ­ной электронной таблице несоизмеримо проще, чем понять, сколько именно нужно их оставить.

Вывод очевиден: гигантский рост возможностей компьютеров в обработке числовой информации ни в коем случае не отменяет, а в некоторых случаях даже усиливает важность осознанного выбора подходящих методов и технологий решения тех или иных возникаю­щих на практике вычислительных задач.

Современное программное обеспечение, имеющее своей целью реализацию на компьютере всевозможных расчетов, необычайно разнообразно. Для организации вычислений с помощью ЭВМ существует большое коли­чество программ, которые различаются идеологией по­строения, набором возможностей, степенью автомати­зации расчетов, трудозатратами на организацию вычис­лительного процесса, а также возможностями представ­ления результатов (например, в графическом виде). Ко­нечно, круг программных средств и технологий обработ­ки, числовой информации не ограничивается калькулято­рами и электронными таблицами. Любой школьник знает, что вычислительные задачи можно эффективно решать с помощью языков программирования. Некоторые даже имели опыт работы с системами аналитических преоб­разований математических выражений (Maple, Mathematica или им подобными), которые могут, преж­де чем подставлять конкретные числовые значения, ре­шить задачу в общем виде; часто полученных формул уже без всяких дополнительных расчетов бывает доста­точно, чтобы понять результаты задачи.

Выбираемое для вычислений программное обеспе­чение должно соответствовать уровню их сложности (вспомните, например, пословицу о стрельбе из пуш­ки по воробьям).

Однократные вычисления по 1—2 небольшим фор­мулам быстрее и проще всего выполнить, запустив программу-калькулятор. Отметим, что данный подход эффективен именно при небольших объемах вычисле­ний и когда не требуется их многократное повторе­ние; в противном случае возрастает вероятность оши­бок и становится оправданным применение более слож­ного программного обеспечения.

Обработка серии данных по одинаковым формулам (результаты эксперимента или финансовые расчеты) с возможностью наглядного представления данных (таблицы, графики) представляет собой типичную за­дачу для электронных таблиц.

Тем не менее на практике вполне могут встретить­ся задачи, для которых даже мощности современных электронных таблиц явно недостаточно. Например, при статистической обработке результатов эксперимента часто необходимо не просто найти корреляцию, т.е. уровень взаимосвязи, между двумя столбцами, но проанализировать наличие связи "каждого с каждым". Подобную задачу гораздо легче решить добавлением к обычному режиму электронной таблицы специальной программы-макроса или даже использованием тради­ционного языка программирования.

Желательно изложить

При решении задач, связанных с обработкой чис­ловой информации, разработчики предоставляют нам целый ряд типов программного обеспечения. Мы мо­жем, в частности:

1) использовать программу-калькулятор;

2) применять непосредственный режим языка про­граммирования (например, Basic);

3) разработать и реализовать программу решения задачи на языке программирования;

4) воспользоваться электронной таблицей;

5) написать программу-макрос для электронной таб­лицы (некоторое начальное представление о макросах можно получить, обратившись, например, к учебнику [2] );

6) привлечь на помощь аналитическую систему. Список, разумеется, не претендует на полноту, и,

вполне возможно, читатели могут его продолжить.

Проще всего, по-видимому, разбить процесс реше­ния вычислительной задачи на отдельные составляю­щие и посмотреть, как они поддерживаются при раз­личных способах решения. Результаты удобно пред­ставить в виде следующей таблицы (номера столбцов соответствуют порядковым номерам методов решения в приведенном ранее списке):

Из таблицы видно, что возможности различного программного обеспечения для обработки числовых данных различны. Прежде всего они касаются степе­ни автоматизации расчетов (например, макросы в со­стоянии заменить большое количество "ручных" опе­раций), повторяемости тех или иных действий (пов­торение расчета по хранящимся формулам, наличие программы и т.д.), простоте их реализации (красиво оформленную таблицу в Excel получить проще, чем при традиционных методах программирования).

Составляющие процесса решения

1

2

3

4

5

6

Арифметические действия

Да

Да

Да

Да

Да

Да

Хранение промежуточных результатов и констант

Несколько

Много

Много

Много

Много

Много

Хранение формул

Нет

Нет

Да .

Да

Да

Да

Математическое преобразование формул

Нет

Нет

Нет

Нет

Нет

Да

Хранение программы

Нет

Нет

Да

Нет

Да

Да

Автоматическое повторение (циклы, итерации)

Нет

Ограничено

Да

Ограничено

Да

Да

Действия по условию

Нет

Ограничено

Да

Ограничено

Да

Да

Табличное представление результатов

Нет

Ограничено

Да

Автоматически

Автоматически

Да

Графическое представление

Нет

Нет

Да

Да

Да

Да

Возможность сортировки данных

Нет

Нет

Да

Встроена

Да

Да


Примечание для учеников

Обязательно выясните, какой объем ответа на дан­ный вопрос хочет услышать от вас учитель. В свете рассказанного ранее может оказаться, что часть изло­жения (раздел "желательно изложить") можно будет вообще пропустить.

Ссылка на материалы по вопросу

Подробный текст материалов к вопросу опублико­ван в "Информатике" № 15, 2003, с. 3— 5.

2. Событийное объектно-ориентированное программирование. Событийные и общие процедуры

Базовые понятия

События и их обработчики.

Программа как совокупность обработчиков.

Обязательно изложить

Обработка событий является одной из основ совре­менного программного обеспечения. Событиями в ин­тересующем нас сейчас смысле называется все то, что требует реакции программы. Сюда относятся действия пользователя с мышью и клавиатурой, а также всевоз­можные изменения состояния системы: появление и исчезновение окон, изменение содержимого области ре­дактирования в результате вывода и многое другое. На­писанная нами программа должна в ответ на происхо­дящие события осуществлять те или иные действия: на­пример, по щелчку мыши вызывать появление диалого­вого окна, при закрытии активного окна переключать фокус ввода на одно из оставшихся окон, а при умень­шении размера текста убирать полосы прокрутки.

Подчеркнем, что событие есть базовое понятие, присущее самой операционной системе Windows, a не системам программирования.

При событийном подходе программа рке не является чем-то единым и последовательным, а представляет со­бой совокупность обработчиков (подчас абсолютно не­зависимых друг от друга) тех или иных событий. Проще говоря, программист должен описать, как его приложе­ние будет реагировать на каждое из обрабатываемых событий. Отметим, что написать несколько небольших обработчиков заметно легче, чем цельную программу.

Нам кажется, что ответ на данный вопрос лучше все­го построить на конкретном примере. Один из вариан­тов такого рассмотрения подробно изложен в предыду­щей публикации по билетам 11-го класса, где разбирает­ся несложная программа, которая осуществляет букси­ровку с помощью кнопки мыши небольшой картинки.

Желательно изложить

Поскольку реакция программы на события, как пра­вило, связана с конкретными визуальными компонента­ми — щелчок по кнопке, изменение размеров окна и т.п., обработчики также принято считать методами конкретных объектов. В качестве наиболее распростра­ненного примера рассмотрим заголовок обработчика

события OnClick (реакция на щелчок мыши) в систе­ме Delphi для компонента типа Buttonl, имеющий вид procedure TForml.ButtonlClick(Sender: TObject);

Налицо объектно-ориентированная форма записи, где имя метода отделено точкой от класса, к которому принадлежит данный метод.

Заметим, что типичным аргументом является объект Sender, через который система Delphi передает имя кон­кретного объекта, вызывающего обработчик. Последнее обстоятельство представляет большой практический ин­терес, так: как; позволяет делать общий обработчик; на группу компонентов. Скажем, для калькулятора вместо 10 одно­типных обработчиков кнопок можно написать всего один:

' п := 10 * n + (Sender as TButton).tag;

В приведенной формуле предполагается, что пере­менная п, накапливающая результат набора числа, имеет целочисленный тип, а значения свойства tag у всех кнопок предварительно установлены в соответ­ствии с надписью на кнопке (на кнопке "1" задана 1, на кнопке "2" — 2 и т.д.). Тогда становится понят­ным, что, используя Sender в качестве конкретной кнопки, мы получаем доступ к ее свойству tag и по стандартной формуле добавляем его к текущему зна­чению числа в качестве последней десятичной цифры.

Описывая функционирование обработчиков событий, целесообразно несколько подробнее рассказать о меха­низме реализации событий в современном программ­ном обеспечении, Материал этот следует считать до­полнительным, но, по мнению авторов, он достаточно нагляден и полезен для понимания сути фундаменталь­ных процессов событийного программирования. Хочется даже провести некоторую аналогию: в физике тоже можно применять некоторые законы электричества, не зная того, что ток есть направленное движение элект­ронов; тем не менее это, к счастью, (пока!) не являет­ся основанием для исключения данного фундаменталь­ного материала из школьного курса.

Основой обработки событий в современных программ­ных системах служит посылка и прием сообщений. В про­стейшем случае сообщение представляет собой несколько помещаемых в строго определенное место памяти целых чисел. Первое является идентификатором сообщения: проще говоря, оно позволяет однозначно определить на­значение сообщения. Остальные числа являются парамет­рами, раскрывающими суть события. Скажем, для случая сообщений мыши это координаты положения ее указате­ля на экране. Для других сообщений содержание инфор­мации, разумеется, будет отличаться, но можно утверж­дать, что каждому типу сообщений соответствует строго определенная "уточняющая" информация.

Те, кого заинтересовала эта часть вопроса и кто на­мерен рассказать о ней на экзамене, могут обратиться к полному тексту билета (см. ссылку в конце вопроса).

Примечание. Советую также в случае более глубокого ин­тереса к вопросу о сообщениях Windows внимательно после­дить за последующими номерами газеты. Там будет опублико­вана статья Е.А. Еремина "Что такое скан-код клавиши и как его увидеть", в конце которой описывается довольно простая программа непосредственной обработки сообщений от клави-

БИЛЕТ № 20

I 1. Компьютерная графика. Аппаратные средства . (монитор, видеокарта, видеоадаптер, сканер и др.). ' Программные средства (растровые и векторные гра-I фические редакторы, средства деловой графики, про-| граммы анимации и др.).

2. Этапы развития вычислительной техники. Ос­новные технические характеристики современного I персонального компьютера.

3. Практическое задание по работе с электрон-' ной почтой (в локальной или глобальной компью- ' I терной сети).

1. Компьютерная графика. Аппаратные средства (монитор, видеокарта, видеоадаптер, сканер и др.). Программные средства (растровые и векторные графические редакторы, средства деловой графики, программы анимации и др.)

Базовые понятия

Компьютерная графика, монитор, видеокарта, ви­деоадаптер, сканер, цифровой фотоаппарат, растровая компьютерная графика, векторная компьютерная гра­фика, фрактальная компьютерная графика, ЗО-графи-ка, деловая графика, анимационная графика.

Обязательно изложить

Представление данных на мониторе компьютера в графическом виде впервые было реализовано в сере­дине пятидесятых годов для больших ЭВМ, применяв­шихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъем­лемой принадлежностью подавляющего числа компью­терных систем, в особенности персональных. Графи­ческий интерфейс пользователя сегодня является стан­дартом "де-факто" для программного обеспечения разных классов, начиная с операционных систем.

Специальную область информатики, занимающую­ся методами и средствами создания и обработки изоб­ражений с помощью программно-аппаратных вычис­лительных комплексов, называют компьютерной гра­фикой. Она охватывает все виды и формы представле­ния изображений, доступных для восприятия челове­ком либо на экране монитора, либо в виде копии на внешнем носителе. Визуализация данных находит при­менение в самых разных сферах человеческой деятель­ности. Например, в медицине (компьютерная томо-

графия), научных исследованиях, моделировании тка­ней и одежды, опытно-конструкторских разработках.

В зависимости от способа формирования изображе­ний компьютерную графику принято подразделять на растровую, векторную и фрактальную. Отдельным предметом считается трехмерная (3D) графика: пост­роение объемных моделей объектов в виртуальном про­странстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

На специализацию в отдельных областях указывают названия некоторых разделов: "Инженерная графи­ка", "Научная графика", "Web-графика", "Компью­терная полиграфия" — и прочие. На стыке компью­терных, телевизионных и кинотехнологий образова­лась область компьютерной графики и анимации.

Хотя компьютерная графика служит всего лишь инструментом, ее структура и методы основаны на передовых достижениях фундаментальных и приклад­ных наук: математики, физики, химии, биологии, ста­тистики, программирования и множества других. Это замечание справедливо как для программных, так и для аппаратных средств создания и обработки изобра­жений на компьютере. Поэтому компьютерная гра­фика является одной из наиболее бурно развивающихся отраслей информатики.

Информационную связь между пользователем и компьютером обеспечивает монитор. Система отобра­жения компьютера состоит из двух главных компо­нентов:

монитора (дисплея);

видеоадаптера (называемого также видеоплатой, или графической платой).

Информация на мониторе может отображаться несколькими способами. Самый распространенный — отображение на экране электронно-лучевой трубки (ЭЛТ), такой же, как в телевизоре. ЭЛТ представляет собой электронный вакуумный прибор в стеклянной колбе, в горловине которого находится электронная пушка, а на дне — экран, покрытый люминофором.

Нагреваясь, электронная пушка испускает поток элек­тронов, которые с большой скоростью двигаются к эк­рану. Поток электронов (электронный луч) проходит через фокусирующую и отклоняющую катушки, кото­рые направляют его в определенную точку покрытого люминофором экрана. Под воздействием ударов элект­ронов люминофор излучает свет, который видит пользо­ватель, сидящий перед экраном компьютера.

Химическое вещество, используемое в качестве лю­минофора, характеризуется временем послесвечения,

которое отображает длительность свечения люминофо­ра после воздействия электронного пучка. Время после­свечения и частота обновления изображения должны соответствовать друг другу, чтобы не было заметно мерцание изображения (если время послесвечения очень мало) и отсутствовали размытость и удвоение контуров в результате наложения последовательных кадров (если время послесвечения слишком велико).

Электронный луч движется очень быстро, прочер­чивая экран строками слева направо и сверху вниз по траектории, которая получила наименование растр. Период сканирования по горизонтали определяется скоростью перемещения луча поперек экрана.

В процессе развертки (перемещения по экрану) луч воздействует на те элементарные участки люмино-форного покрытия экрана, в которых должно появиться изображение. Интенсивность луча постоянно меняет­ся, в результате чего изменяется яркость свечения со­ответствующих участков экрана. Поскольку свечение исчезает очень быстро, электронный луч должен вновь и вновь пробегать по экрану, возобновляя его. Этот процесс называется возобновлением (или регенераци­ей) изображения.

Существуют альтернативные конструкции средств отображения, основанные на других физических яв­лениях. Позаимствовав технологию у изготовителей плоских индикационных панелей, некоторые компа­нии разработали жидкокристаллические дисплеи, на­зываемые также LCD-дисплеями (Liquid-Crystal Display). Для них характерен безбликовый плоский экран и низкая потребляемая мощность (некоторые модели таких дисплеев потребляют 5 Вт, в то время как мониторы с электронно-лучевой трубкой — по­рядка 100 Вт). По качеству цветопередачи жидко­кристаллические панели с активной матрицей в на­стоящее время превосходят большинство моделей мониторов с электронно-лучевой трубкой.

Разрешающая, способность, или разрешение, мони­тора — это размер минимальной детали изображе­ния, которую можно различить на экране. Данный параметр характеризуется количеством элементов раз­ложения — пикселей (pixel) — по горизонтали и вер­тикали экрана. Чем больше количество пикселей, тем более детальное изображение формируется на экране. Необходимое разрешение в значительной степени за­висит от конкретного приложения. Символьные при­ложения (например, текстовый редактор) требуют невысокого разрешения, в то время как приложения с большим объемом графики (например, настольная издательская система) нуждаются в более детальных изображениях.

Важной характеристикой монитора, определяющей четкость изображения на экране, является размер зерна (точки, dot pitch) люминофора экрана монитора. Величи­на зерна монитора имеет значения от 0,41 до 0,18 мм.

Видеоадаптер формирует сигналы управления мо­нитором. Большинство видеоадаптеров поддеРживает по крайней мере один из следующих стандартов:

MDA (Monochrome Display Adapter);

CGA (Color Graphics Adapter);

EGA (Enhanced Graphics Adapter);

VGA (Video Graphics Array);

SVGA (SuperVGA);

XGA (extended Graphics Array).

Сканер — это устройство ввода в ЭВМ информации . непосредственно с бумажного документа. Можно вво­дить тексты, схемы, рисунки, графики, фотографии и другую графическую информацию. Сканеры можно раз­делить на несколько групп: по типу интерфейса, способу формирования сигнала, типу сканируемых документов.

Различают цветные и черно-белые сканеры. Также можно выделить ручные, планшетные, роликовые, проекционные сканеры. В офисах и дома чаще ис­пользуют планшетные сканеры.

Для дальнейшей обработкшотсканированных изоб­ражений используются соответствующие средства ма­шинной графики; текста — программы распознава­ния, например, Fine Reader.

Рисунок с точки зрения растрового редактора со­стоит из отдельных точек (элементов) — пикселей. Чаще всего пиксель есть объединение нескольких фи­зических точек экрана, и только в частном случае каж­дый элемент изображения совпадает с единственной точкой на мониторе. Все пиксели характеризуются двумя координатами и цветом. Поскольку растровый принцип однозначно определяет последовательность обхода точек рисунка, специально сохранять коорди­наты нет необходимости, а достаточно запомнить пос­ледовательность цветов всех точек.

Важной характеристикой растрового изображения является количество цветов. Чем больше количество цветов, тем лучше цветопередача, но тем больше зани­мает места полученный рисунок.

Если в растровой графике базовым элементом изображения является точка, то в векторной графи­ке — линия. Линия описывается математически как единый объект, и потому объем данных для отобра­жения объекта средствами векторной графики су­щественно меньше, чем в растровой графике.

Линия — элементарный объект векторной графи­ки. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начер­танием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объек­тами (текстуры, карты) или выбранным цветом.

Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. УЗЛЫ также имеют свой­ства, параметры которых влияют на форму конца ли­нии и характер сопряжения с другими объектами.

5

Все прочие объекты векторной графики составля­ются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из кото­рых, в свою очередь, образован четырьмя связанными линиями. Возможно представить куб и как двенадцать связанных линий, образующих ребра.

Система деловой графики — система, позволяю­щая выводить на экран различные виды графиков и диаграмм: гистограммы, круговые и секторные диаг­раммы и т.д. В частности, такие средства содержатся в табличных процессорах, например, в MS Excel.

Система научной и инженерной графики — систе­ма, позволяющая в цвете и в заданном масштабе ото­бражать на экране графики двухмерных и трехмер­ных функций, заданных в табличном или аналитиче­ском виде, системы изолиний, в том числе и нанесен­ные на поверхность объекта, сечения, проекции, кар­ты и др.

Анимация — технология мультимедиа; воспроизве­дение последовательности картинок, создающее впе­чатление движущегося изображения. Средства поддержки создания анимационных изображений имеются в большинстве растровых и векторных гра­фических редакторов.

Базовые понятия

Этапы развития вычислительной техники (ручной, механический, электромеханический, электронный).

Обязательно изложить

Основной инструмент компьютеризации — ЭВМ (или компьютер). Человечество проделало долгий путь, прежде чем достигло современного состояния средств вычислительной техники.

Основными этапами развития вычислительной тех­ники являются:

I. ручной — с 50-го тысячелетия до н.э.;

П. механический — с середины XVII века;

III. электромеханический — с девяностых годов XIX века;

IV. электронный — с сороковых годов XX века.

I. Ручной период автоматизации вычислений начал­ся на заре человеческой цивилизации. Он базировался на использовании пальцев рук и ног. Счет с помощью группировки и перекладывания предметов явился пред­шественником счета на абаке — наиболее развитом счетном приборе древности. Аналогом абака на Руси являются дошедшие до наших дней счеты. Использо­вание абака предполагает выполнение вычислений по разрядам, т.е. наличие некоторой позиционной систе­мы счисления.

В начале XVII века шотландский математик Дж. Не-пер ввел логарифмы, что оказало революционное вли­яние на счет. Изобретенная им логарифмическая ли­нейка успешно использовалась еще пятнадцать лет назад, более 360 лет прослужив инженерам. Она, не­сомненно, является венцом вычислительных инстру­ментов ручного периода автоматизации.

П. Развитие механики в XVII веке стало предпосыл­кой создания вычислительных устройств и приборов, использующих механический способ вычислений. Вот наиболее значимые результаты, достигнутые на этом пути.

1623 г. — немецкий ученый В.Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения четырех арифметических операций над шестиразряд­ными числами.

1642 г. — Б.Паскаль построил восьмиразрядную действующую модель счетной суммирующей машины. Впоследствии была создана серия из 50 таких машин, одна из которых являлась десятиразрядной. Так фор­мировалось мнение о возможности автоматизации умственного труда.

1673 г. — немецкий математик Лейбниц создает . первый арифмометр, позволяющий выполнять все че­тыре арифметических операции.

1881 г. — организация серийного производства арифмометров.

Арифмометры использовались для практических вычислений вплоть до шестидесятых годов XX века.

Английский математик Чарльз Бэббидж (Charles Babbage, 1792—1871) выдвинул идею создания про­граммно-управляемой счетной машины, имеющей ариф­метическое устройство, устройство управления, ввода и печати. Первая спроектированная Бэббиджем машина, разностная машина, работала на паровом двигателе. Она заполняла таблицы логарифмов методом постоян­ной дифференциации и заносила результаты на метал­лическую пластину. Работающая модель, которую он создал в 1822 году, была шестиразрядным калькулято­ром, способным производить вычисления и печатать цифровые таблицы. Второй проект Бэббиджа — ана­литическая машина, использующая принцип про­граммного управления и предназначавшаяся для вы­числения любого алгоритма. Проект не был реализован, но получил широкую известность и высокую оцен­ку ученых.

Аналитическая машина состояла из следующих че­тырех основных частей:

блок хранения исходных, промежуточных и ре­зультирующих данных (склад — память);

блок обработки данных (мельница — арифме­тическое устройство);

блок управления последовательностью вычисле­ний (устройство управления);

блок ввода исходных данных и печати результа­тов (устройства ввода/вывода).

Одновременно с английским ученым работала леди Ада Лавлейс (Ada Byron, Countess of Lovelace, 1815— 1852). Она разработала первые программы для ма­шины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

III. Электромеханический этап развития ВТ явля­ется наименее продолжительным и охватывает около 60 лет — от первого табулятора Г.Холлерита до пер­вой ЭВМ ENIAC.

1887 г. — создание Г.Холлеритом в США первого счетно-аналитического комплекса, состоящего из руч­ного перфоратора, сортировочной машины и табуля­тора. Одно из наиболее известных его применений — обработка результатов переписи населения в несколь­ких странах, в том числе и в России. В дальнейшем фирма Холлерита стала одной из четырех фирм, поло­живших начало известной корпорации IBM.

Начало 30-х годов XX века — разработка счетно-аналитических комплексов. Состоят из четырех основ-

ных устройств: перфоратор, контрольник, сортиров­щик и табулятор. На базе таких комплексов создают­ся вычислительные центры.

В это же время развиваются аналоговые машины.

1930 г. — В.Буш разрабатывает дифференциаль­ный анализатор, использованный в дальнейшем в во­енных целях.

1937 г. — Дж. Атанасов, К.Берри создают элект­ронную машину ABC.

1944 г. — Г.Айкен разрабатывает и создает управ­ляемую вычислительную машину MARK-1. В дальней­шем было реализовано еще несколько моделей.

1957 г. — последний крупнейший проект релейной вычислительной техники — в СССР создана PBM-I, которая эксплуатировалась до 1965 г.

IV. Электронный этап, начало которого связывают с созданием в США в конце 1945 г. электронной вы­числительной машины ENIAC.

В истории развития ЭВМ принято выделять несколько поколений, каждое из которых имеет свои отличительные признаки и уникальные характеристики. Главное отличие машин разных поколений состоит в элементной базе, ло­гической архитектуре и программном обеспечении, кро­ме того, они различаются по быстродействию, оператив­ной памяти, способам ввода и вывода информации и т.д. Эти сведения обобщены ниже в таблице.

ЭВМ пятого поколения должны удовлетворять сле­дующим качественно новым функциональным требо­ваниям:

1) обеспечивать простоту применения ЭВМ путем эффективных систем ввода/вывода информации.

ПОКОЛЕНИЯ ЭВМ

ХАРАКТЕРИСТИКИ

I

II

III

IV

Годы применения

1946-1958

1959-1963

1964-1976

1977—...

Элементная база

Эл. лампа, реле

Транзистор, параметров

ИС, БИС

СБИС

Количество ЭВМ в мире (шт.)

Десятки

Тысячи

Десятки тысяч

Миллионы

Быстродействие (операций в секунду)

ДоЮ5

ДоЮ6

ДоЮ7

Более 107

Объем оперативной памяти

До 64 1<б

До 512 Кб

До 16 Мб

Более 1 6 Мб

Характерные типы ЭВМ поколения

Малые, средние, большие, специальные

Большие, средние, мини- и микроЭВМ

СуперЭВМ, ПК, специальные, общие, сети ЭВМ

Типичные модели поколения

EDSAC, ENIAC, UNIVAC,B3CM

RCA-501, IBM 7090, БЭСМ-6

IBM/ 360, PDF, VAX, ЕС ЭВМ, СМ ЭВМ

ШМ/360, SX-2, IBM PC/XT/AT, PS/2, Cray

Носитель информации

Перфокарта, перфолента

Магнитная лента

Диск

Гибкий, жесткий, лазерный диск и др.

Характерное программное обеспечение

Коды, автокоды, ассемблеры

Языки программирования, АСУ, АСУТП

ппп, СУБД, САПР, япву

БЗ, ЭС, системы параллельного программирования и др.


Случайные файлы

Файл
81302.rtf
169070.rtf
kursovik.doc
111613.doc
141400.rtf