Побудова залежності між метриками та експертною оцінкою программного забезпечення (183842)

Посмотреть архив целиком

Зміст


Завдання

  1. Призначення, описання й характеристики властивості ПЗ та метрик, які будуть досліджуватися

  2. Описання алгоритму та засобів, які будуть використовуватися

  3. Первинний статистичний аналіз із гістограмами метрик, експертної оцінки властивості ПЗ та основними статистичними характеристиками, та перевірками

  4. Висновки по первинному статистичному аналізу

  5. Кореляційний аналіз з кореляційними полями та розрахованими коефіцієнтами кореляції, та перевірками

  6. Висновки по кореляційному аналізу

  7. Регресійний аналіз з побудованими лініями регресій, визначеними функціями регресій, коефіцієнтами у функціях та перевірками

  8. Висновки по регресійному аналізу

  9. Загальні висновки




Завдання


Побудувати залежності між метриками ПЗ та експертною оцінкою властивості ПЗ. Метрики та властивості використати згідно індивідуального варіанту.

Побудова залежності між метриками та експертною оцінкою включає побудову залежностей між прямими метриками та експертною оцінкою, непрямими метриками та експертною оцінкою.

Значення експертних оцінок отримати з лабораторної роботи № 5, значення метрик (прямих та непрямих) отримати з лабораторної роботи № 6. Метрики та експертні оцінки повинні бути отримані для одних і тих самих проектів. Для достовірності отриманих даних по кожній метриці повинно бути отримано не менше 2000 значень (з лабораторної роботи № 6), експертних оцінок – не менше 15-и. Залежності будувати між 5-ма прямими метриками та експертною оцінкою, 5-ма непрямими метриками та експертною оцінкою (використати метрики з лабораторної роботи № 6).

Отримані результати по залежностях між метриками та експертними оцінками порівняти із результатами побудови залежностей між прямими та непрямими метриками в лабораторних роботах № 4 та 5. Визначити чи мають спільні тенденції залежності між тими прямими метриками та експертними оцінками, непрямими метриками та експертними оцінками, які мають залежності між собою (прямі-непрямі метрики). Пояснити чому.


Варіант 13

Зрозумілість інтерфейсу, Ефективність

CYC, NOP, HIT, FOUT, NOC

AMW, ATFD, BovR, CC, CDISP




  1. Призначення, описання й характеристики властивості ПЗ та метрик, які будуть досліджуватися


При виконанні курсової роботи будуть досліджуватись наступні характеристики властивостей ПЗ:

  • Зрозумілість інтерфейсу - чи є призначений для користувача інтерфейс інтуїтивно зрозумілим?

  • Ефективність - наскільки раціонально програма використовує ресурси (пам'ять, процесор) при виконанні своїх завдань

Значення експертних оцінок характеристик властивостей ПЗ по проектах приведено в таблиці 1(оцінки, які були зроблені мною для трьох проектів). Всі інші оцінки , які були зроблені підгрупою для трьох проектів подано в документі формату Excel «Метрики програмних продуктів.xclx».


Таблиця 1. Значення експертних оцінок

п.п.

Властивість

Оцінка (0..10)

Пояснення

Talend Open Studio 3.2.1

Ефективність

8

При виконанні поставлених завдань, програма потребує мінімальну кількість оперативної памяті та інших ресурсів для роботи без затримки

Зрозумілість інтерфейсу

9

Інтерфейс користувача є інтуїтивно зрозумілим, тому не потрібно дуже часто звертатись до документації з метою отриманні допомоги у реалізації тієї чи іншої функції

Openproj-1.4-src

Ефективність

9

Пам’ять раціонально розподілена для усієї програми, що дає змогу раціонально використовувати ресурси при виконанні завдань. Але, як вже уточнювалось раніше, у програмному коді є частина коду, яка не якісно використовує пам’ять.

Зрозумілість інтерфейсу

10

Інтерфейс користувача інтуїтивно зрозумілий та зручний у використанні. Тобто для користуванням даними програмним забезпеченням не треба отримувати додаткових знань

plazma-source 0.1.8

Ефективність

8

При роботі програми не потрібне використання великої кількості оперативної памяті.

Зрозумілість інтерфейсу

10

Інтерфейс користувача є інтуїтивно зрозумілим. Оскільки він відповідає стандарту інтерфейсів IBM 1991.


Також будуть досліджені наступні метрики програмного забезпечення, які подано в таблиці 2(прямі метрики) та таблиці 3(непрямі метрики).


Таблиця 2. Прямі метрики

Метрика

Короткий опис

CYCLO

Цикломатична складність програмного коду

NOC

Загальна кількість класів в проекті

NOP

Загальна кількість параметрів в програмному коді

HIT

Глибина дерева успадкування

FOUT

Кількість модулів, що звертаються до інших модулів


Таблиця 3. Непрямі метрики

Метрика

Короткий опис

AMW

Середня вага методу

ATFD

Доступ до зовнішніх даних

BОvR

Співвідношення перевизначених базових класів

CC

Зміна класів

CDISP

Дисперсійний зв'язок


Результати вимірювань метрик програмних продуктів, що були вище зазначені, подано в документі формату Excel «Метрики програмних продуктів.xclx», що є додатком до даної курсової роботи.

При виконанні даної курсової роботи були використані наступні програмні засоби:

  • iPlasma – дає можливість отримати значення 80-х об’єктно-орієнтованих метрик. Функціонально повний засіб для вимірювання, який вимірює метрики, які відносяться як до окремих класів, методів та пакетів, так і для проекту в цілому. Крім того, метрики виводяться не тільки в числовому вигляді, а й у графічному – у вигляді гістограми.

  • Statistica – пакет для всебічного статистичного аналізу, розроблений компанією StatSoft. У пакеті STATISTICA реалізовані процедури для аналізу даних (data analysis), управління даними (data management), видобутку даних (data mining), візуалізації даних (data visualization).


  1. Описання алгоритму та засобів, які будуть використовуватися


При виконанні даної курсової роботи буде проводитись статистичний аналіз.

Статистичний аналіз, який виконується з метою визначення залежностей між метриками, складається з трьох етапів: первинний статистичний аналіз, кореляційний аналіз та регресійний аналіз.

Схема побудови залежностей між метриками представлена на рис. 1.






Рис. 1 Схема побудови залежностей


Первинний статистичний аналіз метрик та експертних оцінок

Метою первинного статистичного аналізу являється визначення закону розподілу випадкової величини, точніше визначення відповіді на питання „Чи є даний закон розподілу випадкової величини нормальним?”. На етапі первинного статистичного аналізу відбувається дослідження вхідних статистичних даних. Спочатку аналізуються метрики, отримані в результаті вимірювання набору програм, далі експертні оцінки, що зробили експерти для цього ж набору програм.

Кінцевою метою первинного статистичного аналізу є визначення, чи належить побудований закон до нормального. Причиною цього є те, що подальший аналіз базується на перевірці на „нормальність” закону розподілу, тобто кожний з наступних етапів починається цією перевіркою, і в залежності від відповіді застосовуються різні методи обчислень.

Кореляційний аналіз пар „метрика – експертна оцінка”

На етапі кореляційного аналізу визначається, чи існує залежність між певними метриками та експертними оцінками, чи її немає. Якщо залежність існує, то проводиться первинна обробка даних для визначення довірчої ймовірності та виду залежності. В іншому випадку робиться висновок про відсутність залежності.

Отже, результатом даного етапу є відсіювання незалежних між собою пар „метрика – експертна оцінка” та визначення за можливістю виду залежності для інших пар.

Регресійний аналіз залежних величин

Регресійний аналіз – останній етап в дослідженні на залежність метрик та експертних оцінок. Він проводиться тільки при виконанні умови, що дисперсія залежної змінної (експертної оцінки) повинна залишатися постійною при зміні значення аргументу (метрики), тобто, спочатку визначається дисперсія експертної оцінки для кожного прийнятого значення метрики.

Якщо пара „метрика – експертна оцінка” пройшла всі етапи і не була відсіяною, робиться висновок, що експертна оцінка залежить певним чином від значення метрики з силою, що показує коефіцієнт детермінації, а вигляд залежності визначає лінія регресії.


  1. Первинний статистичний аналіз із гістограмами метрик, експертної оцінки властивості ПЗ та основними статистичними характеристиками, та перевірками


Первинний статистичний аналіз проводиться за допомогою програми Statistica, що набагато спрощує обчислення.

Важливим способом "опису" змінної є форма її розподілу, яка показує, з якою частотою значення змінної потрапляють в певні інтервали. Ці інтервали, що називаються інтервалами угруповання, обираються дослідником. Зазвичай дослідника цікавить, наскільки точно розподіл можна апроксимувати нормальним (див. нижче картинку з прикладом такого розподілу) (див. також Елементарні поняття статистики). Прості описові статистики дають про це деяку інформацію. Наприклад, якщо асиметрія (показує відхилення розподілу від симетричного) істотно відрізняється від 0, то розподіл несиметрично, у той час як нормальний розподіл абсолютно симетрично. Отже, у симетричного розподілу асиметрія дорівнює 0. Асиметрія розподілу з довгим правим хвостом позитивна. Якщо розподіл має довгий лівий хвіст, то його асиметрія негативна. Далі, якщо ексцес (показує "гостроту піку" розподілу) істотно відрізняється від 0, то розподіл має або більше закруглений пік, ніж нормальне, або, навпаки, має більш гострий пік (можливо, є декілька піків). Зазвичай, якщо ексцес позитивний, то пік загострений, якщо негативний, то пік закруглений. Ексцес нормального розподілу дорівнює 0.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.