Комплексный анализ рыбной отрасли (183731)

Посмотреть архив целиком

Министерство Образования и Науки Российской Федерации

ГОУ ВПО «Череповецкий Государственный Университет»

Инженерно-Экономический Институт



Кафедра: ММиИТЭ

Дисциплина: экономико-математическое моделирование





Курсовая работа

на тему: «Комплексный анализ рыбной отрасли РФ»




Выполнил: студент

группа 5ММЭ-41

Сверчкова Л.В.

Преподаватель:

Зуев А.Н.


Дата выдачи «__» _____2007 г.

Дата сдачи на проверку «__» _____2007 г.

Дата защиты «__» _____2007 г.



Череповец

2007/2008 уч. год.


Содержание


Введение………………..………………………………………………………….3

Глава 1

1.1. Анализ литературы…………………………………………………………...5

1.2. Характеристика отрасли……………………………………………………11

1.3. Постановка задачи…………………………………………………………..18

Глава 2

2.1. Эконометрический анализ выпуска рыбной продукции …....... ……..….21

2.2. Построение производственных функций………………………………….30

2.3. Построение статистической модели Леонтьева…………………………..33

2.4. Построение динамической модели Леонтьева………...…...…………..…39

2.5. Учет инфляции в модели Леонтьева……………………………………….47

2.6. Построение магистральной модели……………………...………………...48

Глава 3

3.1. Доработки модели Леонтьева………………………………………………55

3.2. Доработки магистральной модели……………………………...………….56

Глава 4

4.1. Построение модели Солоу………………………………………………….57

Заключение……………………………………………………………………….62

Список литературы………………………………………………………..……..64

Приложение………………………………………………………………………65


Введение


Формально отрасль, находящаяся под контролем Росрыболовства, является для бюджета прибыльной: по итогам 2006 года от предприятий отрасли в консолидированные бюджеты поступило более 21 млрд руб. при расходах федерального бюджета 6 млрд руб.. Актуальность темы исследования. Основной целью социально-экономической политики государства является обеспечение высокого уровня «качества» жизни, улучшение жизненных стандартов населения. Существующая экономическая система, рассматривающая ресурсы как неограниченные, привела к глобальным проблемам: демографическим, экологическим, продовольственным, энергетическим и сырьевым. В настоящее время, обеспечение населения страны качественными и доступными по цене рыбными продуктами российского производства - вопрос национальной безопасности. Перечисленные глобальные проблемы могут быть решены за счет создания устойчивой экономической системы хозяйствования в рамках народнохозяйственного комплекса страны.

Постоянное повышение спроса населения на рыбу и морепродукты вызвано тем, что осознанная забота о здоровье предусматривает, при организации рационального питания, широкое использование рыбных продуктов, примером чего служат Япония, Китай, Индия. Рыбопродукты выступают как один из главных источников полезных белков, жиров, микроэлементов животного происхождения, антимутагенезов. При высоком содержании белка и низком содержании жира рыбные продукты, имеющие мало холестерина, но пропорционально более высокий уровень ненасыщенных жирных кислот, особенно важны для детей и пожилых людей.

Целью курсовой работы является изучение рыбной отрасли Российской Федерации с применением соответствующих разноаспектных методов.

Для реализации данной цели необходимо выполнение следующих задач:

1. Провести анализ соответствующей литературы, выявить, какие изученные ранее экономические и математические модели могут быть пригодны для комплексного рассмотрения рыбной отрасли.

2. Выявить характеристики отрасли, её особенности, которые помогли бы нам определиться с выбором той или иной модели для анализа.

3. Описать технологический процесс развития рынка рыбных продуктов с 1999 по 2005 год, выявить факторы, влияющие на этот процесс и построить многофакторную эконометрическую модель рынка рыбных продуктов.

4. Получить производственные функции для рыбной отрасли РФ.

5. Построить статистическую модель Леонтьева для рыбной отрасли РФ.

6. Построить динамическую модель Леонтьева для рыбной отрасли РФ.

7. Для динамической модели Леонтьева учесть фактор инфляции за соответствующий период.

8. Построить магистральную модель для рыбной отрасли РФ.

9. Провести доработку модели Леонтьева, используя выявленные ранее особенности рыбной отрасли РФ.

10. Провести доработку магистральной модели, используя выявленные ранее особенности рыбной отрасли РФ.

11. Получить модель Солоу для рыбной отрасли РФ.


Глава 1


1.1. Анализ литературы


Для анализа комплексного отрасли можно применять множество экономических и математических моделей. Рассмотрим положительные и отрицательные стороны нескольких из них.

Одним из наиболее распространенных методов анализа является эконометрический анализ, который подразумевает поиск и отбор факторов, наиболее важных для рассматриваемого экономического процесса.

Для отбора факторов используется наиболее распространённый метод исключения, то есть из всего набора факторов происходит их отсев.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

  • Они должны быть количественно измеримы.

  • Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй - на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Преимуществом данной модели является то, что она позволяет идентифицировать какой либо финансовый или физический результат экономического процесса с линейной комбинацией наиболее релевантных факторов, которые определяет сам исследователь. Но вместе с тем эконометрический анализ обладает рядом недостатков. Во-первых, полученная факторная модель может быть незначимой, что определяется периодически при её построении, то есть она может и не отражать в достаточной мере исследуемый экономический процесс. Во-вторых, Велика вероятность того, что выбранные в качестве наиболее полно отражающих экономический процесс факторы будут системно его рассматривать.

Также для анализа отрасли можно использовать модель Леонтьева многоотраслевой экономики.

Для успешной работы промышленного предприятия необходима увязка объема и структуры, необходимых в процессе производства ресурсов, определяемых спросом на продукцию предприятия и его возможностями, обеспеченными производственными мощностями, трудовыми, финансовыми, энергетическими и другими производ­ственными фондами. В основе такой увязки лежат нормы расхода необходимых ресурсов. Таким образом, возникает балансовая за­дача расчета взаимосвязи между различными цехами или произ­водственными участками предприятия через выпуск и потребление продукции разного типа.

Эффективное ведение народного хозяйства предполагает наличие баланса между отдельными отраслями. Каждая от­расль при этом выступает двояко: с одной стороны, как про­изводитель некоторой продукции, а с другой — как потреби­тель продуктов, вырабатываемых другими отраслями.

Предположим, что вся производящая сфера народного хозяйства разбита на некоторое число n отраслей, каждая из которых производит свой однородный продукт, причем раз­ные отрасли производят разные продукты. Разумеется, та­кое представление об отрасли является в значительной мере абстракцией, так как в реальной экономике отрасль опреде­ляется не только названием выпускаемого продукта, но и ве­домственной принадлежностью своих предприятий (например, данному министерству, тресту и т. п.). Однако представление об отрасли в указанном выше смысле (как "чистой" отрасли) все же полезно, так как оно позволяет провести анализ сло­жившейся технологической структуры народного хозяйства, изучить функционирование народного хозяйства "в первом приближении".

Итак, предполагаем, что имеется n различных отраслей; О1, …,Оn, каждая из которых производит свой продукт. В дальнейшем отрасль Оi будем коротко называть "i-я отрасль". В процессе производства своего продукта каждая отрасль нуж­дается в продукции других отраслей (производственное по­требление). Будем вести речь о некотором определенном про­межутке времени 0, Т1] (обычно таким промежутком служит плановый год) и введем следующие обозначения:

xi — общий объем продукции отрасли i за данный проме­жуток времени — так называемый валовой выпуск отрасли г;

xij — объем продукции отрасли i, расходуемый отраслью j в процессе производства;

yiобъем продукции отрасли i, предназначенный к по­треблению в непроизводственной сфере, — объем конечного потребления.

Указанные величины можно свести в таблицу. Обратим наше внимание на элементы (xij ). Отрасль пред­ставлена двояким образом. Как элемент строки она выступа­ет в роли поставщика производимой ею продукции, а как эле­мент столбца — в роли потребителя продукции других отрас­лей экономической системы.


Производственное потребление


Конечное потребление


Валовой выпуск

x11 x12 x13….. x1n

y1

x1

x11 x12 x13….. x1n

y2

x2




x11 x12 x13….. x1n

yn

x3


Балансовый характер этой таблицы выражается в том, что при любом i =1,...,п должно выполняться соотношение:

хi= xi1 + xi2 + xi3 + xin + уi , (1)

означающее, что валовой выпуск хi расходуется на произ­водственное потребление, равное xi1 + xi2 + xi3 + xin и непроиз­водственное потребление, равное уi . (1) это соотношения баланса. Таким образом, таблица отражает ба­ланс между производством и потреблением.

Преимуществом данной модели является то, что уравнения межотраслевого баланса можно использовать для целей планирования. В этом случае задача ставится так: для предстоящего планового периода 0, Т1] задается вектор конечного потребления. Требуется определить вектор валового выпуска. Изложенный подход к решению ба­лансовых задач на макроуровне можно использовать при решении подобных задач на микроуровне, то есть на уровне отдельных пред­приятий.

Основная цель работы при использовании модели Леонтьева многоотраслевой экономики: исследование структуры и пропорции производ­ства и распределения производственных фондов предприятия. Используемый математический аппарат: математическое опи­сание балансовых производственных соотношений осуществля­ется с помощью системы линейных уравнений.

Метод “Дельфи” состоит в организации систематического сбора экспертных оценок, их математико-статистический обработки и последовательной корректировки экспертами своих оценок на основе результатов каждого цикла обработки. Его основные особенности: анонимность экспертов; многотуровая процедура опроса экспертов посредством их анкетирования; обеспечение экспертов информацией, включая и обмен ею между экспертами, после каждого тура опроса при сохранении анонимности оценок; обоснование ответов экспертов по запросу организаторов. Метод предназначен для получения относительно надежной информации в ситуациях ее острой недостаточности, например, в задачах долгосрочного научно-технического комплексного прогнозирования.

Метод “коллективной генерации идей” целесообразен для определения возможных вариантов развития объекта прогнозирования и получения продуктивных результатов за короткий срок путем вовлечения всех экспертов в активный творческий процесс. Сущность этого метода состоит в мобилизации творческого потенциала экспертов во время “мозговой атаки” и генерация идей с последующим деструированием (разрушением, критикой) этих идей и формулированием контридей.

Преимуществом этого подхода является новизна принимаемых курсов действий и творческий подход к решению поставленных задач. Недостатком является большая зависимость от квалификации специалистов-экспертов и их знания особенностей объекта изучения.

Из рассмотренных моделей нельзя выбрать наилучшую и наихудшую. Все они специализированы и предназначены для конкретно определенных целей исследования. А их комбинирование позволяет получить комплексную оценку объекта изучения. В нашем случае фармацевтической отрасли РФ.

В данной работе мы оценили и сравнили рыбную отрасль также в основном в денежном значении, но при этом использовали не отдельные, произвольно выбранные, а комплекс основных финансовых показателей, используемых официальной статистикой.

Кроме денежных, мы использовали натуральные показатели, характеризующие роль рыбной промышленности и промысел лососей в создании рабочих мест и производстве продуктов питания.

Полагая, что финансовые и натуральные показатели рыбной промышленности и промысла лососей мало что скажут сами по себе, мы сравнили их с аналогами от других основных экономических источников существования – пищевой промышленности, энергетики, сельского хозяйства и т. д.

Я использовала только официальные статистические данные, предназначенные для открытого публичного доступа. Частично исходные статистические материалы в виде таблиц и графиков приведены в работе. Это представляется необходимым для того, чтобы читатели имели материалы для собственных рассуждений и выводов и могли судить, насколько корректно выполнены соответствующие оценки. Все мои оценки прозрачны и могут быть пересчитаны читателями на основе приведенных алгоритмов и данных.

Для «нерыбных» отраслей я использовала данные ФСГС без подробных комментариев и анализа. Для рыбной промышленности я провела анализ данных ФСГС, привели более подробные комментарии и собственные расчеты, чтобы читатели могли судить об объективности этих данных. Это сделано потому, что для рыбной промышленности в СМИ сделано очень много экономических оценок, диапазон которых весьма велик.


1.2. Характеристика рыбной отрасли


Представление о величине и динамике уловов в России в целом, в Исключительной экономической зоне России (ИЭЗ РФ), в Дальневосточном федеральном округе (ДФО) и его приморских регионах (ДВ) /В дальнейшем тексте и таблицах аббревиатура ДФО будет означать весь федеральный округ, а ДВ - только его регионы, имеющие выход к побережью Тихого океана - Приморье, Хабаровский край, Сахалин, Камчатку, Магадан и Чукотку./ в 2000-2005 гг. дают табл. 1.2.1, 1.3.1, 1.3.2 (Приложение стр.65), построенные по данным [ 13, 14, 65].

Из табл. 1.2.1 и 1.3.1 (Приложение стр.65) видно, что основу общего российского улова составляет улов в ИЭЗ РФ - в среднем за 2000-2004 гг. - 2433,76 тыс. т (71,4 %), а почти весь улов ИЭЗ РФ дает промысел на ДВ - 1 959,6 тыс. т (80,5 %). В целом ДВ дает около 60 % от современного общероссийского улова.

Общий улов в России в 2000-2004 гг. снизился с 4 011 до 2 913 тыс. т и в среднем составил 3 410,2 тыс. т. Улов в ИЭЗ РФ снизился с 2 794 до 2 034,8 тыс. т (в среднем - 2 433,8 тыс. т), на ДВ - с 2 275,6 до 1 715,3 тыс. т (в среднем 1 959,6 тыс. т).

Промысел на ДВ, безусловно, составляет основу всего российского рыболовства.

Состав современных дальневосточных уловов, внутри- и межгодовое распределение промысловых усилий характеризует табл. 1.2.2. (Приложение стр. 65). Основу морских уловов рыб составляют тресковые, прежде всего - минтай, сельди, камбалы и терпуги; уловов беспозвоночных - кальмары и крабы.

Основные пропорции видового состава морских уловов в последние 10 лет относительно стабильны. Можно отметить только потерю относительной доли и значения камчатского краба в уловах беспозвоночных в прошедшие 10 лет, а особенно, в последние 5 лет. Падение численности камчатского краба сравнимо с падением численности Бристольской популяции в конце 1970 - начале 1980 гг.

Зоны дальневосточного рыболовства показаны на рис. 1.3.1. Красными линиями показаны границы рыболовных зон, по которым распределяется общий допустимый улов (ОДУ) и ведется статистика вылова.

Различными цветами выделены зоны ответственности региональных Управлений по охране и воспроизводству рыбных запасов (Рыбводов). (В настоящее время эти функции переданы ФПС и региональным управлениям Россельхознадзора). Они примерно соответствуют прилегающим к субъектам Федерации Дальневосточного федерального округа (ДФО) морским акваториям, на которые теоретически распространяется преимущественное право этих субъектов Федерации. Эта "теоретическое право" следует из статей 9 и 72 Конституции РФ, согласно которым природные ресурсы территорий являются основой жизнедеятельности населения, проживающего на этой территории. Согласно российскому законодательству водные биоресурсы (ВБР) ИЭЗ являются федеральной собственностью, поэтому управляет ВБР ИЭЗ федеральное Правительство при участии администраций регионов.



Рис. 1.3.1. Рыбопромысловые районы Дальнего Востока


Общая квота субъекта Федерации (СФ) в суммарном ОДУ морских промысловых объектов дальневосточных морей традиционно определяется не столько объемом биоресурсов, сосредоточенным в прилегающих к субъекту акваториях, сколько мощностью крупно- и среднетоннажного рыбопромыслового флота, которым располагает СФ. Традиционно самым большим рыбопромысловым флотом располагает Приморский край, чем и определяется его первостепенное "рыболовное значение" в морском промысле на ДВ.

Общая квота СФ в суммарном ОДУ лососей (анадромных видов) определяется долей СФ в общей величине воспроизводства лососей на ДВ. Это обусловлено тем, что промысел лососей ведется непосредственно у берегов .

Вклад регионов ДВ в российский и дальневосточный уловы показывает табл. 1.3.1.



Табл. 1.3.1. Относительная доля регионов ДВ в общем улове России, улове ИЭЗ России и ДВ

Регион

Средний вылов в 2000-2004 гг., тыс.т

Доля от вылова России,%

Доля от вылова в ИЭЗ России,%

Доля от вылова на ДВ,%

Россия всего

3410,2

100,00

 

 

ИЭЗ России

2433,76

71,4

100,0

 

Республика Саха

1,5

0,04

0,06

0,08

Приморский край

683,74

20,0

28,1

34,9

Хабаровский край

159,36

4,7

6,5

8,1

Сахалинская обл.

412,48

12,1

16,9

21,0

Магаданская обл.

80,16

2,4

3,3

4,1

Камчатская обл.

622,34

18,2

25,6

31,8

ДВ в целом

1959,58

57,5

80,5

100,0

Доля ДВ, от общего улова России, %

57,5

 

 

 

Доля ДВ, от улова в ИЭЗ России, %

80,5

 

 

 



Главными рыбопромысловыми регионами на ДВ являются Приморский край и Камчатка, давшие в 2000-2004 гг. 34,9 и 31,8 % общего улова на ДВ. Доля Приморского края в общероссийском улове и улове ИЭЗ РФ - 20 и 28,1 %, Камчатки - 18,2 и 25,6 %, соответственно.

Третий по значению регион - Сахалинская обл. - 412,48 тыс. т среднегодового улова, 21 % - в уловах ДВ, 12,1 % - улова России, 16,9 % - улова ИЭЗ РФ.

Четвертое место - Хабаровский край - 159,36 тыс. т среднегодового улова, 8,1 % - в уловах ДВ, 4,7 % - улова России, 6,5 % - улова ИЭЗ РФ. Пятое место - Магаданская обл. (МО) вместе с Чукотским автономным округом (ЧАО) - 80,16 тыс. т - среднегодовой улов, 4,1 % - в уловах ДВ, 2,4 % - улова России, 3,3 % - улова ИЭЗ РФ.

Сравнительное значение регионов в уловах в относительных величинах характеризует табл. 1.3.2.


Табл. 1.3.2. Относительные величины уловов в регионах, %

Регион

Приморский край

Камчатка

Сахалинская обл.

Хабаровский край

МО + ЧАО

 

100

91

60,3

23,3

11,7



В региональных изданиях Федеральной службы государственной статистики (ФСГС) приводятся данные по общему вылову ВБР и суммарной величине доходов рыбной промышленности в регионах за год. Эта величина называется - объем промышленной продукции рыбной промышленности (ОПР), исчисляется в действующих ценах года и указывается в рублях. Величина ОПР главным образом определяется стоимостью продаж продукции, произведенной из годового вылова. По сути, ОПР - это сумма денег, которую все рыбопромышленники региона получили в течение отчетного года по фактически заключенным договорам продаж своей продукции и услуг, сведения о которых они подали в налоговую инспекцию. В изданиях ФСГС не указывается, какую долю ОПР составили продажи продукции отдельных видов ВБР. Поэтому на основе материалов ФСГС выделить объем продаж лососей из общего ОПР невозможно.

Стоимость вылова лососей можно оценить, используя средние оптовые цены производителей лососевой продукции. Эту стоимость следует рассматривать как потенциальную стоимость промыслового ресурса (объекта). В таком случае для сравнения с лососями объем продаж каждого другого вида в составе ОПР также должен соответствовать потенциальной стоимости вида как промыслового ресурса. В противном случае, сравнение будет некорректно.

По нашему мнению, термин "потенциальная стоимость промыслового ресурса" по содержанию и объему составляет значительную часть понятия "региональный жизненный ресурс", определенного нами во Введении.

Потенциальная стоимость видов как промысловых ресурсов должна характеризоваться:

1. Воспроизводимым, универсальным и прозрачным алгоритмом расчета, позволяющим сравнение разных ресурсов между собой.

2. Отсутствием резких межгодовых колебаний в случае стабильного состояния самого ресурса, т. е. устойчивостью.

3. Стоимость одного и того же набора ресурсов, указанная различными пользователями этих ресурсов, должна быть близкой, т. е. в большей степени определяться собственными "экономическими" свойствами, нежели способом оценки.

Рассмотрим, насколько указанные по данным ФСГС величины ОПР в регионах ДВ в 2000-2004 гг. (табл. 1.5.1.1) соответствуют потенциальной стоимости видов как промысловых ресурсов.

1. Алгоритм расчета. Не указан. Неизвестно, насколько фактическая цена продаж соответствует фактически сложившимся средним оптовым ценам, какие виды продукции, на каких рынках и по каким ценам проданы. Насколько соответствует общий объем проданной продукции в тоннах объему вылова. Безусловно, эти данные есть в бухгалтерских документах предприятий, но анализ общего баланса соответствия по регионам отсутствует. Например, причиной роста ОПР на фоне падения улова (рис 1.5.1.1 (17) по данным табл 1.5.1.1 Приложение стр. 65) может быть рост цен, вызванный повышением спроса, инфляцией, более технологичной переработкой улова, ростом себестоимости вследствие роста цен на топливо или введения платы за квоты, сменой рынков продаж или просто большей полнотой отражения финансовой деятельности в документах. Мы можем лишь констатировать рост стоимости продукции на фоне снижения вылова в 2000-2004 гг. и с большой долей вероятности предположить, что это связано с общим ростом спроса на высококачественный белок.




Рис. 1.5.1.1. Изменение стоимости продукции, произведенной из общего улова ДВ бассейна в 2000-2004 гг.


Формально отрасль, находящаяся под контролем Росрыболовства, является для бюджета прибыльной: по итогам 2006 года от предприятий отрасли в консолидированные бюджеты поступило более 21 млрд руб. при расходах федерального бюджета 6 млрд руб. Впрочем, глава Росрыболовства полагает, что речь идет о глубоком кризисе - сокращении в 3,5 раза добычи рыбы и продукции аквакультуры с 1991 года, снижении доли переработанной продукции в официальном экспорте до 15%. Росрыболовство оценивает износ судов рыбопромыслового флота в 68%, опасается резкого снижения добычи за пределами РФ и потери Россией квот на вылов рыбы в Мировом океане.


1.3. Постановка задачи


Целью курсовой работы является изучение рыбной отрасли Российской Федерации с применением соответствующих разноаспектных методов. Объектом исследования является рынок рыбной продукции препаратов Российской Федерации. Предметом исследования – учет влияния факторов финансово- экономического характера на рынок рыбной продукции.

Для реализации данной цели необходимо выполнение следующих задач:

1. Провести анализ соответствующей литературы, выявить, какие изученные ранее экономические и математические модели могут быть пригодны для комплексного рассмотрения рыбной отрасли.

2. Выявить характеристики отрасли, её особенности, которые помогли бы нам определиться с выбором той или иной модели для анализа.

3. Описать технологический процесс развития рынка рыбной отрасли с 1999 по 2005 год, выявить факторы, влияющие на этот процесс и построить многофакторную эконометрическую модель рынка рыбной продукции.

4. Получить производственные функции для рыбной отрасли РФ.

5. Построить статистическую модель Леонтьева для рыбной отрасли РФ.

6. Построить динамическую модель Леонтьева для рыбной отрасли РФ.

7. Для динамической модели Леонтьева учесть фактор инфляции за соответствующий период.

8. Построить магистральную модель для рыбной отрасли РФ.

9. Провести доработку модели Леонтьева, используя выявленные ранее особенности рыбной отрасли РФ.

10. Провести доработку магистральной модели, используя выявленные ранее особенности рыбной отрасли РФ.

11. Получить модель Солоу для рыбной отрасли РФ.

Основу изучения рыбной отрасли составляет рассмотрение ей в качестве составляющей народного хозяйства. Классификатор отраслей народного хозяйства предус­матривает выделение в промышленности 16 комплексных отраслей, представляющих по существу крупные группы отраслей промышленности:

  1. Электроэнергетика

  2. Топливная промышленность

  3. Черная металлургия

  4. Цветная металлургия

  5. Химическая и нефтехимическая промышленность

  6. Машиностроение и металлообработка

  7. Лесная, деревообрабатывающая и целлюлозно-бумаж­ная промышленность

  8. Промышленность строительных материалов

  9. Метало обрабатывающая промышленность

  10. Легкая промышленность

  11. Пищевая промышленность

  12. Судостроительная промышленность

  13. Промышленность минеральных удобрений

  14. Промышленность медицинского оборудования

  15. Полиграфическая промышленность

  16. Другие отрасли промышленности

Классификация отраслей промышленности по характе­ру воздействия на предмет труда делит их на две группы: добывающие и обрабатывающие отрасли.

Рыбная отрасль на данный период показывают неустойчивость работы, судя по объему выпускаемой продукции. Причин этому несколько. Одна из них - это постоянная зависимость от бюджетного заказчика, так как рост цен на рыбу происходил значительно более высокими темпами по сравнению с доходами населения и возможностями централизованных и местных бюджетов. Это привело к увеличению периода оборота рыбной продукции в цикле “производство - потребитель” и образованию значительного дефицита оборотных средств у предприятий.

Вторая причина - разрыв хозяйственных связей между предприятиями бывшего СССР, оказавшимися по разные стороны границ. Для сохранения хозяйственных связей предприятиям приходилось преодолевать дополнительные трудности по взаиморасчетам из-за введения разных валют, нескоординированного изменения цен, введения налогов и таможенных пошлин, а также бюрократической разрешительной системы экспорта.

Третья причина - неподготовленность промышленности, и, прежде всего многих ее руководителей, к работе в условиях рыночной экономики. От модели хозяйствования, когда деятельность предприятия обеспечивалась центральными органами управления (от планирования объемов и номенклатуры производства, снабжения сырьем и материалами до сбыта готовой продукции), произошел резкий переход к модели, предусматривающей полную хозяйственную самостоятельность и децентрализацию управления. Восстанавливается и в настоящее время поддерживается на достаточно высоком уровне координирующая роль центральных органов управления, через которые государство осуществляет свою политику по улучшению ыбноего обеспечения населения страны путем реализации государственного заказа и целевых федеральных программ, финансируемых из бюджета.


Глава 2


2.1. Эконометрический анализ выпуска рыбной продукции. Множественная регрессия и корреляция.


Отбор факторов для построения множественной регрессии.

На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. В данной работе будет исследоваться экономический процесс, в котором также учитывается влияние нескольких факторов на результат.

Для отбора факторов используется наиболее распространённый метод исключения, то есть из всего набора факторов происходит их отсев.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

  • Они должны быть количественно измеримы.

  • Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй - на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Данные, характеризующие рассматриваемую проблему, представлены в таблице. Статистические сведения приведены за 7 лет.




1999

2000

2001

2002

2003

2004

2005

y

2201

1913

1384

1067

961

1172

918

x1

736

730,5

719,7

740,1

748,6

744,9

745,9

x2

10,8

10,7

10,6

10,3

10,1

9,8

9,5

x3

148532

147501

146304

145649

144964

144168

143474

x4

114,9

115

114,4

112,6

111,6

112,5

111,3

x5

3167

3983,9

5325,8

6831

8900

10976,3

13667,8

x6

5807,5

7305,6

8934,6

10830,5

13243,2

16966,4

21597,9

x7

4901

4876

4795

4709

4602

4579

4457

x8

0,7

0,4

0,4

0,6

0,7

1,4

1,5

x9

23,7

29,7

36,7

36,1

43,2

61,6

78,4

x10

65,7

65,34

65,23

65,95

64,85

65,27

65,3


где у - производство рыбной продукции (минтай, судак, камбала, сельдь, палтус и т.д.), тонны;

х1 – численность персонала, тыс. человек;

х2 – число предприятий отлова рыбы, тысяч;

х3 - численность населения, тыс. чел;

х4 – число предприятий на государственном обеспечении, тысяч;

х5 - денежные доходы, млрд руб;

х6 - ВВП, млрд руб;

х7 - правоохранительных организаций, тысяч;

х8 – страхование производственных фондов, %;

х9 - инвестирование в рыболовную промышленность, млрд руб;

х10 – увеличение стоимости квот на отлавливаемую рыбу, %.

Присутствие лишних факторов приводит только к статистической незначимости параметров регрессии. Естественно, использовать все факторы в уравнении регрессии не удастся, так как число наблюдений невелико, и получить значимые параметры уравнения регрессии при таком количестве факторов невозможно. Их число должно быть сведено к минимуму.

Так как в данной экономической модели уже выделены факторы, оказывающие влияние на результат, то при отборе факторов для построения множественной регрессии воспользуемся методом исключения. В данном случае отбор факторов основывается на вычислении матрицы парных коэффициентов корреляции.

Коэффициенты интеркорреляции (т.е. корреляции между объясняющими переменными) позволяют исключить из модели дублирующие факторы.

Для того чтобы сделать выводы о влиянии экономических факторов на развитие лесного хозяйства, необходимо на основе данных, представленных в работе за семилетний период (с 1998 по 2004 гг.), составить модель множественной регрессии, которая бы описывала зависимость производство лекарств от всех вышеперечисленных факторов. Должны быть решены вопросы, связанные с выбранными факторными признаками и с видом применяемого уравнения регрессии. Далее следует рассмотреть влияние выбранных факторов на результат при наличии временной переменной. Совокупность выполненных работ позволит сформулировать выводы о взаимосвязях в изучаемой области.

Частный коэффициент корреляции отражает чистое влияние рассматриваемого фактора на результат, т.к. остальные факторы закрепляются на определенном уровне, т.е. являются постоянными.

Формула для расчета частного коэффициента корреляции, измеряющего влияние на у фактора хi при неизменном уровне других факторов, можно определить по формуле:

,

где - множественный коэффициент детерминации всего комплекса р факторов с результатом;

- тот же показатель детерминации, но без введения в модель фактора xi.

Парные коэффициенты корреляции вычисляются по формуле:

Получили следующую таблицу коэффициентов корреляции:


 

у

х1

х2

х3

х4

х5

х6

х7

х8

х9

х10

у

1











х1

-0,883

1










х2

-0,521

0,1002

1









х3

-0,495

0,0697

0,959

1








х4

0,4136

0,035

-0,755

-0,8104

1







х5

0,4561

-0,003

-0,970

-0,9792

0,8554

1






х6

0,3665

0,0675

-0,975

-0,9398

0,7412

0,9741

1





х7

-0,007

0,1411

-0,526

-0,3517

-0,045

0,4114

0,6033

1




х8

0,595

-0,342

-0,694

-0,7302

0,5306

0,6198

0,545

0,0165

1



х9

-0,135

0,4521

-0,333

-0,2732

0,6315

0,4497

0,4456

0,1575

-0,239

1


х10

-0,635

0,2972

0,7292

0,70582

-0,765

-0,6855

-0,5901

0,0468

-0,865

-0,188

1


Значения коэффициентов корреляции, находящиеся в диапазоне 0< ׀r׀0.3 говорят о слабой связи между наблюдаемыми признаками; значения 0.3≤ ׀r׀0.7 – о средней связи и 0.7≤׀r׀< 1 – о тесной связи. Положительные значения коэффициентов корреляции свидетельствуют о прямой связи между переменными, отрицательные – об обратной связи, то есть увеличение одного из факторов сопровождается уменьшением другого. Из полученной матрицы коэффициентов парной корреляции следует, что ряд факторов имеет парные коэффициенты корреляции больше 0,7.




у

х1

х2

х3

х4

х5

х6

х7

х8

х9

х10

у

1











х1

-0,883

1










х2

-0,522

0,1

1









х3

-0,495

0,07

0,959

1








х4

0,414

0,035

-0,756

-0,81

1







х5

0,456

-0,003

-0,971

-0,979

0,855

1






х6

0,366

0,067

-0,975

-0,94

0,741

0,974

1





х7

-0,007

0,141

-0,527

-0,352

-0,046

0,411

0,603

1




х8

0,595

-0,342

-0,694

-0,73

0,531

0,62

0,545

0,016

1



х9

-0,135

0,452

-0,334

-0,273

0,632

0,45

0,446

0,158

0,113

1


х10

-0,635

0,297

0,729

0,706

-0,765

-0,69

-0,59

0,047

-0,673

-0,189

1


Из пары факторов х3 и х2 исключаем фактор х2, так как его связь с другими факторами более сильная, чем связь x3 с ними. Исключаем фактор x7, так как его связь с y очень незначительная. По такой схеме исключаем все другие факторы. Таким образом, для построения модели остаются факторы х1, х5, х8 и х10. Матрица коэффициентов парной корреляции для них выглядит следующим образом:

 

у

х1

х5

х8

х10

у

1





х1

-0,88300608

1




х5

0,45605173

-0,003474

1



х8

0,59499201

-0,342415

0,619844

1


х10

-0,635065

0,297207

-0,685489

-0,6729266

1


Для получения адекватной модели необходимо устранить мультиколлинеарность, т.е. вывести из рассмотрения факторы, которые имеют совокупное воздействие друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые из них всегда будут действовать в унисон. Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Чем ближе к нулю этот проеделитель, тем сильнее мультиколлинеарность факторов. Для наших парных коэффициентов корреляции между факторами матрица имеет вид:

Определитель матрицы парных коэффициентов корреляции между факторами равен 0,2, что достаточно близко к 0, следовательно, между оставшимися факторами наблюдается мультиколлинеарность.

Продолжим удаление факторов, являющихся самыми неинформативными, регулярно сопоставляя значения множественного коэффициента корреляции и детерминации (который оценивает качество построенной модели в целом) и проверяя значимость уравнения регрессии.


В следующих таблицах представлены результаты регрессионного анализа после исключения факторов х1, х5, х8, х10.

ВЫВОД ИТОГОВ




Регрессионная статистика

Множественный R

0,999530603

R-квадрат

0,999061427

Нормированный R-квадрат

0,995307133

Стандартная ошибка

29,05134237

Наблюдения

6


Дисперсионный анализ






 

df

SS

MS

F

Значимость F

Регрессия

4

898372,4

224593,0982

266,111717

0,045939839

Остаток

1

843,9805

843,9804935



Итого

5

899216,4

 

 

 


 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

30538,08691

1623,46624

18,81042319

0,03381216

x1

-26,94728304

1,07745261

-25,01017937

0,02544087

x5

0,007316604

0,00087595

8,352752758

0,07585572

x8

-242,9957642

101,983594

-2,382694665

0,25297163

x10

-81,66075105

21,2523898

-3,842426757

0,16208611


По данным вычислениям уравнение регрессии будет иметь вид:

ŷ =30538,09-26,95*x1+0,007*x5-242.996*x8-81,66*x10.


б) Оценка практической значимости и надежности полученного уравнения.


Для оценки значимости параметров уравнения используется t- критерий Стьюдента. С помощью t-критерия Стьюдента для каждого из оставшихся факторов можно выяснить, формируется ли он под воздействием случайных величин (является ли фактор информативным).

Его можно определить как:

,

где - частный F- критерий Фишера, который определяется по формуле:

,

где - множественный коэффициент детерминации всего комплекса р факторов с результатом;

- тот же показатель детерминации, но без введения в модель фактора xi.

n- число наблюдений;

m- число параметров в модели (без свободного члена).

При этом определяются две гипотезы:

Н0 - коэффициент статистически незначим;

Н1 - коэффициент статистически значим.

Затем сравнивается факторное значение t- критерия, т.е. вычисленное, и табличное, определенное по специальной таблице t-критерия. Если факторное значение окажется больше табличного, то гипотеза Н0 отклоняется и коэффициент признается статистически значимым.

В полученном уравнении tтабл: n-m-1=7-4-1=2, tтабл =4,3

Следовательно коэффициенты при факторах х1, х5 являются статистически значимыми, для них значение t-критерия больше 4,3, следовательно, можно сделать вывод о существенности данных параметров, которые формируются под воздействием неслучайных причин, а коэффициенты при х8, х10, соответственно, незначимы.

P-значение характеризует вероятность случайного характера формирования параметра. Из рассчитанных значений видно, что наибольшей вероятностью случайной природы факторов обладают b8 , поэтому этот фактор можно исключить из уравнения регрессии. Также удаляем фактор b10 (так как он не является значимым).

Проведём анализ данных для оставшихся двух факторов:


ВЫВОД ИТОГОВ



Регрессионная статистика

Множественный R

0,99242

R-квадрат

0,984897

Нормированный R-квадрат

0,974828

Стандартная ошибка

67,28282

Наблюдения

6


Дисперсионный анализ





 

df

SS

MS

F

Значимость F

Регрессия

2

885635,4

442817,7

97,8175049

0,001856086

Остаток

3

13580,93

4526,978



Итого

5

899216,4

 

 

 


 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

287,2650033

1821,254

14,04644

0,00078146

x1

2,866255447

2,231529

-12,4227

0,00112406

x5

-0,145583563

0,001402

6,384305

0,00778112


Проверим еще раз наличие мультиколлинеарности оставшихся факторов. Для парных коэффициентов корреляции между факторами х1, х5 матрица имеет вид:

Определитель матрицы парных коэффициентов корреляции между факторами приближенно равен 1 что говорит об отсутствии мультиколлинеарности между оставшимися факторами.

Теперь из модели исключены явно коррелированные факторы, следовательно, можно приступать к оценке модели множественной регрессии. Значимость и надежность всего уравнения в целом определяется с помощью

F- критерия Фишера:

,

где R2- коэффициент (индекс) множественной детерминации;

n- число наблюдений;

m- число параметров при переменных х.

После вычисления F-критерия факторное значение сравнивается с табличным. Если факторное значение больше табличного, то уравнение статистически значимо и надежно.

Полученное уравнение ŷ = 287,265 +2,86*х1 -0,145*х5 является надежным и статистически значимым, т.к. Fфакт = 97,82 > Fтабл=6,94 (для определения Fтабл m=2, n-m-1=7-2-1=4).

Итак, окончательная математическая модель будет выглядеть следующим образом:

ŷ = 287,265 +2,86*х1 -0,145*х5.

Из полученного уравнения видно, что на производство рыбной продукции, тыс. тонн (фактор у) в большей степени влияют такие факторы как численность населения, на тыс. человек (фактор х1) и денежные доходы, млн. руб. (фактор х5). Причем при увеличении численности населения на тыс. человек на единицу производство рыбной продукции увеличится на 2,86 тонн, а при увеличении денежных доходов на 1 млрд руб. – уменьшится на 0,009 тонн.


2.2. Построение производственных функций


Рассмотрим некоторые производственные функции, их предназначение и свойства.

Название производственной функции

Двухфакторная производственная функция

Использование

1.Функция с
фиксированными
пропорциями
факторов (ПФ
Леонтьева)




Предназначена для моделирования строго
детерминированных технологий, не
допускающих отклонения от технологических
норм использования ресурсов на единицу
продукции. Обычно используются для описания
мелкомасштабных или полностью
автоматизированных производственных
объектов.

2. ПФ Кобба -
Дугласа


Используется для описания среднемасштабных
объектов (от промышленного объединения до
отрасли), характеризующихся устойчивым,
стабильным функционированием.

3. Линейная ПФ

Применяется для моделирования
крупномасштабных систем (крупная отрасль, н-х
в целом), в которых выпуск продукции является
результатом одновременного функционирования
множества различных технологий.

4. ПФ Аллена


Предназначена для описания производственных
процессов, в которых чрезмерный рост любого
из факторов оказывает отрицательное влияние на
объем выпуска. Обычно используется для
описания мелкомасштабных ПС с
ограниченными возможностями переработки
ресурсов.

5. ПФ постоянной
эластичности
замены факторов
(ПЭЗ или CES)




Применяется в случаях, когда отсутствует точная
информация об уровне взаимозаменяемости
производственных факторов и есть основания
предполагать, что этот уровень существенно не
изменяется при изменении объемов вовлекаемых
ресурсов. Может быть использована (при
наличии средств оценивания параметров) для
моделирования систем любого уровня.


Из описания представленных выше производственных функций можно сделать вывод, что для моделирования производственного процесса выпуска рыбной продукции могут подойти три из них: Линейная ПФ и ПФ Кобба – Дугласа.


 

1999

2000

2001

2002

2003

2004

2005

Выпуск, тонны

2201

1913

1384

1067

961

1172

918

Себестоимость сырья

1563

1721

2004

1245

1321

1276

1436

Отработанные человеко-часы

314,1

315,53

321,262

322,7

321,26

301,183

304,05

Проведем исследование с помощью метода наименьших квадратов в программе MathCAD.

1. ПФ Кобба – Дугласа.






































2. Линейная ПФ.


































Следовательно, вычисление отклонения дает нам следующие результаты: линейная производственная функция F(K,L)=-9652+1,223K+28,676L лучше идентифицирует производственный процесс выпуска рыбной продукции за указанный период.


2.3. Построение статистической модели Леонтьева


Эффективное ведение народного хозяйства предполагает наличие баланса между отдельными отраслями. Каждая от­расль при этом выступает двояко: с одной стороны, как про­изводитель некоторой продукции, а с другой — как потреби­тель продуктов, вырабатываемых другими отраслями.

Предположим, что вся производящая сфера народного хозяйства разбита на некоторое число n отраслей, каждая из которых производит свой однородный продукт, причем раз­ные отрасли производят разные продукты. Разумеется, та­кое представление об отрасли является в значительной мере абстракцией, так как в реальной экономике отрасль опреде­ляется не только названием выпускаемого продукта, но и ве­домственной принадлежностью своих предприятий (например, данному министерству, тресту и т. п.). Однако представление об отрасли в указанном выше смысле (как "чистой" отрасли) все же полезно, так как оно позволяет провести анализ сло­жившейся технологической структуры народного хозяйства, изучить функционирование народного хозяйства "в первом приближении".

Итак, предполагаем, что имеется n различных отраслей; О1, …,Оn, каждая из которых производит свой продукт. В дальнейшем отрасль Оi будем коротко называть "i-я отрасль". В процессе производства своего продукта каждая отрасль нуж­дается в продукции других отраслей (производственное по­требление). Будем вести речь о некотором определенном про­межутке времени 0, Т1] (обычно таким промежутком служит плановый год) и введем следующие обозначения:

xi — общий объем продукции отрасли i за данный проме­жуток времени — так называемый валовой выпуск отрасли г;

xij — объем продукции отрасли i, расходуемый отраслью j в процессе производства;

yiобъем продукции отрасли i, предназначенный к по­треблению в непроизводственной сфере, — объем конечного потребления.

Этот объем составляет обычно более 75% всей произве­денной продукции. В него входят создаваемые в хозяйстве запасы, личное потребление, обеспечение общественных по­требностей (просвещение, наука, здравоохранение и т. д.), по­ставки на экспорт.

Указанные величины можно свести в таблицу. Обратим наше внимание на элементы (xij ). Отрасль пред­ставлена двояким образом. Как элемент строки она выступа­ет в роли поставщика производимой ею продукции, а как эле­мент столбца — в роли потребителя продукции других отрас­лей экономической системы.


Производственное потребление


Конечное потребление


Валовой выпуск

x11 x12 x13….. x1n

y1

x1

x11 x12 x13….. x1n

y2

x2




x11 x12 x13….. x1n

yn

x3



Балансовый характер этой таблицы выражается в том, что при любом i =1,...,п должно выполняться соотношение:

хi= xi1 + xi2 + xi3 + xin + уi , (4.1)

означающее, что валовой выпуск хi расходуется на произ­водственное потребление, равное xi1 + xi2 + xi3 + xin и непроиз­водственное потребление, равное уi Будем называть (4.1) соотношениями баланса. Таким образом, таблица отражает ба­ланс между производством и потреблением.

Единицы измерения всех указанных величин могут быть или натуральными (кубометры, тонны, штуки...), или стоимо­стными.

Леонтьев, рассматривая развитие экономики, обратил внимание на важное обстоятельство. Величины остаются постоянными в течение ряда лет. Это обусловливается примерным постоянством используемой технологии.

Таким образом, сделаем такое допущение: для выпуска любого объема хj продукции j необходимо затратить продук­цию отрасли i в количестве , где — постоянный коэф­фициент. Проще говоря, материальные издержки пропорцио­нальны объему производимой продукции. Это допущение по­стулирует линейность существующей технологии. Принцип ли­нейности распространяется и на другие виды издержек, на­пример, на оплату труда, а также на нормативную прибыль.

Итак, согласно гипотезе линейности имеем:

(4.2)


Коэффициенты ац называют коэффициентами прямых затрат (коэффициенты материалоемкости).


Случайные файлы

Файл
125095.rtf
8186.rtf
184-1.rtf
162680.rtf
13299.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.