Обработка статистической информации при определении показателей надежности (183562)

Посмотреть архив целиком

Вятская государственная сельскохозяйственная академия

Инженерный факультет

Кафедра ремонта машин











Обработка статистической информации при определении показателей надежности



Выполнил А.А. Костюнин

Группа ИАу-540

Проверил В. Д Шерстобитов









Киров 2006


Содержание


Введение

1 Первичная обработка статистической информации

1.1 Статистический ряд информации

1.2 Определение среднего значения и среднеквадратического отклонения показателей надежности

1.3 Проверка информации на выпадающие точки

1.4 Графическое изображения опытного распределения

1.5 Определение коэффициента вариации

1.6 Выбор теоретического закона распределения

1.7 Критерии согласия опытных и теоретических распределений показателей надежности

1.8 Определение доверительных границ рассеивания одиночного и среднего значений показателя надежности. Абсолютная и относительная предельные ошибки

1.9 Определение минимального числа объектов наблюдения при оценке показателей надежности

2 Методы обработки усеченной информации

2.1 Вероятностная бумага закона нормального распределения

2.2 Вероятностная бумага закона распределения Вейбулла

Литература

Приложение



Введение


Для техники, используемой в сельскохозяйственном производстве, характерно значительное рассеивание показателей надежности из-за нестабильности качества новых или отремонтированных машин и различных условий их эксплуатации. Вследствие этого все показатели надежности автомобилей, тракторов и сельскохозяйственных машин относятся к категории случайных величин, обработка и расчет которых производится методами теории вероятностей и математической статистики.

Существует несколько методов обработки информации. Некоторые из них (например, метод максимального правдоподобия) сложны, трудоемки, нуждаются в применении электронно-вычислительной техники. Использование таких методов в хозяйствах и на ремонтных предприятиях для обработки информации о надежности сельскохозяйственной техники не только затруднено, но и нецелесообразно, т.к. их точность превышает точность исходной информации.

Рассмотренный ниже метод обработки информации прост и надежен. Его могут применять инженеры сельскохозяйственного производства без использования электронно-вычислительных машин.



1 Первичная обработка статистической информации


Основные этапы обработки статистической информации следующие:

- составление сводной таблицы исходной информации в порядке возрастания показателей надежности (вариационный ряд);

- составление статистического ряда;

- определение среднего значения () и среднего квадратического отклонения (σ) показателя надежности;

- проверка информации на выпадающие точки;

- графическое изображение опытной информации (построение полигона и кривой накопленных опытных вероятностей показателя надежности);

- определение коэффициента вариации (υ), характеризующего относительное рассеивание показателя надежности;

- выбор теоретического закона распределения, определение его параметров и графическое построение дифференциальной и интегральной кривых;

- оценка совпадения опытного и теоретического распределений по критериям согласия;

- определение доверительных границ одиночных и средних значений показателя надежности и наибольших возможных ошибок расчета.

Последовательность выполнения расчетов приведена в таблице 1.1.


Таблица 1.1 – Размеры толщины шлиц первичного вала коробки перемены передач ( 50-1701032) трактора МТЗ-50

п/п

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Размер, мм

6,01

6,09

6,16

6,22

6,24

6,27

6,28

6,32

6,36

6,39

6,41

6,45

6,46

6,47

п/п

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Размер, мм

6,54

6,56

6,58

6,60

6,61

6,63

6,64

6,67

6,69

6,71

6,73

6,75

6,79

6,81

п/п

29

30

Размер, мм

6,84

6,96


Допустимый размер - 6,45 мм


1.1 Статистический ряд информации


Статистический ряд информации составляется для упрощения дальнейших расчетов в том случае, если повторность исходной информации  не менее 25.

Для построения статистического ряда вся информация разбивается на n интервалов. Ориентировочно количество интервалов определяется по формуле:


, (1.1)


где n – число интервалов; N – число исследуемых объектов.

Наиболее рациональное количество интервалов, применяемое на практике n=6…14.

Все интервалы должны быть одинаковыми по величине, прилегать друг к другу и не иметь разрывов.

Для нашего случая:

.

Ширина интервала «А» ориентировочно определяется по формуле:


, (1.2)


где tmax – максимальное значение случайной величины;

tmin – минимальное значение случайной величины и округляется до удобной величины.

мм.

Начало первого интервала принимаем t1Н=6,0 мм.

Статистический ряд представляет из себя таблицу из четырех строк (таблица 1.2). В первой строке указываются границы интервалов, во второй – количество случаев попадания случайной величины в каждом интервале (частота) mi , в третьей – опытная вероятность pi случайной величины, в четвертой – накопленная опытная вероятность

Опытная вероятность определяется как отношение числа случаев mi к общему объему информации N. Так, например, опытная вероятность в первом и втором интервалах равна:


; .


Правильность построения статистического ряда может быть проверена по накопленной вероятности.

Для последнего интервала


Таблица 1.2 – Статистический ряд информации

Интервал

6,00-6,16

6,16-6,32

6,32-6,48

6,48-6,64

6,64-6,80

6,80-6,96

Частота mi

3

5

6

7

6

3

Опытная вероятность Pi

0,1

0,17

0,2

0,23

0,2

0,1

Накопленная опытная вероятность ∑Pi

0,1

0,27

0,47

0,7

0,9

1

Середина

6,08

6,24

6,40

6,56

6,72

6,88



1.2 Определение среднего значения и среднеквадратического отклонения показателей надежности


Среднее значение является важнейшей характеристикой показателя надежности. На основании средних значений производится планирование работы машины, определение объемов ремонтных работ, составление заявок на запасные части и т.д.

Точность определения среднего значения возрастает по мере увеличения повторности информации, приближаясь к своему пределу – математическому ожиданию.

При наличии статистического ряда среднее значение показателя надежности определяется по уравнению:


(1.3)


где n – количество интервалов в статистическом ряду;

ti – значение середины i-го интервала;

pi – опытная вероятность i-го интервала.

Средний размер толщины шлиц первичного вала коробки передач, определенный по уравнению 1.3 с использованием статистического ряда будет равен:

.

Среднеквадратичное отклонение  является абсолютной характеристикой рассеивания показателя надежности, позволяющей переходить от общей совокупности к показателям надежности отдельных машин. При наличии статистического ряда информации среднее квадратическое отклонение определяется по уравнению:



Случайные файлы

Файл
31268-1.rtf
18850-1.rtf
161585.rtf
25964.doc
30374.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.