Статистическая проверка гипотез (182430)

Посмотреть архив целиком

Содержание


Введение

Статистическая проверка гипотез

1.Статистическая гипотеза. Статистический критерий. Ошибки, возникающие при проверке гипотез

2. Порядок проверки статистических гипотез

3. Проверка однородности результатов эксперимента в целях исключения грубых ошибок

4. Проверка гипотезы о воспроизводимости опытов

5. Проверка гипотезы о нормальном распределении ошибок эксперимента

6. Проверка гипотезы о виде распределения. ( Критерий согласия Пирсона )

6.1 Расчёт теоретических частот для нормального распределения

7.Проверка гипотезы о согласованности мнений экспертов (априорное ранжирование переменных)

8. Уравнение линейной регрессии. Коэффициент корреляции. Проверка гипотезы о значимости коэффициента корреляции

8.1 Метод наименьших квадратов

8.2 Проверка незначимости коэффициента корреляции

8.3 Использование корреляционной таблицы для вычисления коэффициента корреляции

Вывод

Список литературы

Приложения



Введение


Тема курсовой работы «Статистическая проверка гипотез».

К важнейшим направлениям научно-технического прогресса относятся автоматизация производства, широкое применение компьютеров и роботов, создание гибких автоматизированных устройств и т.д. Во всех этих направлениях ведущая роль принадлежит электронике.

При создании электронной и электромеханической аппаратуры основные трудозатраты приходятся на ее настройку, снятие характеристик и испытания. При этом нередко используется малоэффективный традиционный метод однофакторного эксперимента, недостаточно внимания уделяется организации и планированию эксперимента и вероятностно-статистическому анализу получаемых данных. Чтобы повысить производительность труда в данной области, специалистам необходимо знать основы математической теории эксперимента и успешно применить ее на практике.

Цель работы – ознакомится со статистической проверкой гипотез, а именно:

о воспроизводимости результатов эксперимента, о виде распределения результатов эксперимента, о наличии корреляционных связей между факторами и переменной состояния и др., рассмотрении практических примеров.



Статистическая проверка гипотез


1. Статистическая гипотеза. Статистический критерий. Ошибки, возникающие при проверке гипотез


Статистической называют гипотезу о виде неизвестного распределения или о параметрах известного распределения.

Например, гипотеза H0 - случайная величина распределена по нормальному закону.

Нулевой (основной) называется выдвинутая гипотеза H0.

Альтернативной (конкурирующей) называется гипотеза, противоречащая основной (конкурирующих гипотез может быть несколько).

Например, основная гипотеза - математическое ожидание случайной величины Y равно 5

H0 : My=5,

конкурирующие:


H1 :

H2 :

H3 :


Статистическим критерием (К) называется случайная величина, точное или приближённое распределение, которой известно и которая служит для проверки справедливости нулевой гипотезы.

Множество возможных значений критерия делится на две непересекающихся области:

1) значения, при которых нулевая гипотеза справедлива (область принятия гипотезы).

2) значения, при которых нулевая гипотеза отвергается (критическая область).

Критическая область может быть односторонней (левосторонней, правосторонней) или двусторонней.


Рис.1. Виды критических областей: правосторонняя, левосторонняя и двусторонняя.


Точка Ккр, отделяющая критическую область от области принятия гипотезы, называется критической точкой.

Чтобы определить критическую область, выбирают число q-уровень значимости. q- вероятность того, что при справедливости нулевой гипотезы значение критерия К попадает в критическую область. Тогда для правосторонней критической области Ккр определяется из условия:


P { K > Kkp } = q.


Значение критерия табулировано, т. е. Kkp можно найти по таблице распределения критических точек в зависимости от уровня значимости q и числа степеней свободы f. -Наблюдаемое значение критерия Kнабл определяется по результатам эксперимента.

Если Kнабл<Kkp, то гипотеза H0 принимается. Если Kнабл>Kkp, то H0 отвергается, а принимается конкурирующая гинотеза H1.

Для левосторонней критической области критическая точка определяется из условия:



P { K < Kkp } = q.


Для двухсторонней:


P { K < Kkp } + P { K > Kkp } = q.


Если двусторонняя область симметрична относительно начала координат, то:


P { K < Kkp } = .


Так как наблюдаемое значение критерия определялось по результатам эксперимента, то Кнабл-случайная величина и, следовательно, могут возникать ошибки при принятии гипотезы. Различают ошибки первого и второго рода. К ошибкам первого рода относят те, при которых отвергается правильная гипотеза. К ошибкам второго рода, относят те, при которых принимается неправильная гипотеза. Допустимой вероятностью ошибки первого рода является q-уровень значимости. Однако. если уменьшать q, то возрастает вероятность принятия неверной гипотезы, т. е. вероятность ошибок второго рода. Если справедлива гипотеза H1, то это считается доказанным, если справедлива гипотеза H0-то говорят, что результаты эксперимента не противоречат нулевой гипотезы. Для того чтобы считать H0 доказанной нужно или вновь повторить эксперимент или проверить гипотезу с помощью других критериев.




2. Порядок проверки статистических гипотез


1) Выбор нулевой и альтернативной гипотез H0 и H1.

2) Выбор критерия K и уровня значимости q.

3) Вычисление Kнабл по результатам эксперимента.

4) Поиск Kkp по таблице распределения критических точек для выбранного критерия.

5) Если Kнабл попадает в критическую область, то принимается альтернативная гипотеза H1, если Kнабл попадает в область принятия гипотезы, то принимается основная гипотеза H0.



3. Проверка однородности результатов эксперимента в целях исключения грубых ошибок


Результаты эксперимента удобно оформлять в виде таблицы . В графах 2-5 содержится план эксперимента (значение факторов), в остальных графах – результаты опытов. Пусть поводится N серий экспериментов серии (то есть в каждом из N точек факторного пространства проводится по опытов). Обозначим :

-значение j-того фактора в i-той серии;( j = 1,…,n ).

-значения отклика (переменной состояния ) в j-ом параллельном опыте i-ой серии .

Вычислим оценки математического ожидания для каждой серии:


Таблица 1.

серии

1

2

3

4

5

6

7

8

9

1

2


:

:











N


Грубые ошибки искажают результаты эксперимента и должны быть исключены .Чаще всего при этом используют r-критерий .

В соответствии с этим критерием результаты эксперимента в i-ой серии ,в которой предполагается ошибка , ранжируется ,т.е. располагается в неубывающем порядке Одно из крайних значений считается промахом (ошибкой ),если оно далеко отстоит от всех остальных.

Проверяется нулевая гипотеза : не выделяется значимо среди остальных результатов серии.

Альтернативная гипотеза : отличие от остальных значимо.

Если сомнительным показалось наименьшие значение , то наблюдаемое значение критерия определяется формулой:



Если сомнительным оказалась наблюдение в серии значение , то



По таблице распределения r-критерия , используя число степеней свободы и уровень значимости определяется критическое значение критерия


.


Если , топринимается, то есть результаты эксперимента можно считать однородными. В противном случае резко выделяющийся результат эксперимента исключается из дальнейшей обработки. Чтобы не нарушать методику дальнейшей обработки надо или исключить столбец содержащий измерение , признанное ошибкой, или в этой точке произвести дополнительный опыт.


Случайные файлы

Файл
55528.rtf
174724.rtf
2656-1.rtf
93768.rtf
50478.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.