Линейные автоматические системы регулирования (181121)

Посмотреть архив целиком

РОСАТОМ

СЕВЕРСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ

Кафедра Э и АФУ




ЛИНЕЙНЫЕ АВТОМАТИЧЕСКИЕ СИСТЕМЫ РЕГУЛИРОВАНИЯ

КУРСОВОЙ ПРОЕКТ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

200600.В075.01.000 ПЗ




Преподаватель:

_________В.Я. Дурновцев

«___»____________2008 г.


Студент:

__________И.А. Акелькин

«___»____________2008 г.







Северск – 2008


СОДЕРЖАНИЕ


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 ПОСТРОЕНИЕ СТАТИЧЕСКОЙ МОДЕЛИ ОБЪЕКТА

1.1 Статическая модель объекта первого порядка

1.2 Статистическая модель объекта второго порядка

1.3 Расчёт коэффициентов передачи объекта

2 ПОСТРОЕНИЕ ДИНАМИЧЕСКОЙ МОДЕЛИ ОБЪЕКТА

2.1 Динамическая модель объекта 1-го порядка без запаздывания

2.2 Динамическая модель объекта 1-го порядка с запаздыванием

2.3 Динамическая модель объекта 2-го порядка без запаздывания

2.4 Динамическая модель объекта 2-го порядка с запаздыванием

3 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОБЪЕКТА

3.1 Приведение к нормальной системе дифференциальных уравнений

3.2 Решение нормальной системы уравнений методом Рунге-Кутта, с постоянным шагом.

4 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ОБЪЕКТА

4.1 Частотные характеристики

4.1.1 Расчёт частотных характеристик вручную

4.1.2 Расчёт частотных характеристик в системе MathCAD.

4.2 Расчет расширенных частотных характеристик объекта.

4.2.1 Расчет расширенных частотных характеристик объекта в системе MathCAD13

5 ВЫБОР И РАСЧЕТ ПАРАМЕТРОВ НАСТРОЙКИ РЕГУЛЯТОРОВ

5.1 П - регулятор

5.1.1 Расчёт П - регулятора вручную

5.1.2 Расчёт П - регулятора в системе MathCAD

5.2 И – регулятор.

5.2.1 Расчёт И – регулятора вручную.

5.2.2 Расчёт И – регулятора в системе MathCAD

5.3 ПИ – регулятор

5.3.1 Расчёт ПИ – регулятора вручную

5.3.2 Расчёт ПИ – регулятора в системе MathCAD

6 ПЕРЕДАТОЧНЫЕ ФУНКЦИИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

6.1 Разомкнутые системы

6.2 Замкнутые системы

7 ИССЛЕДОВАНИЕ НА УСТОЙЧИВОСТЬ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

7.1 Постановка задачи

7.2 Методы исследования САУ на устойчивость

7.3 Проверка устойчивости САУ по критерию Рауса

7.3.1 Замкнутая система с П – регулятором

7.3.2 Замкнутая система с И – регулятором

7.3.3 Замкнутая система с ПИ – регулятором

7.4 Проверка устойчивости систем по частотному критерию Найквиста

7.4.1 Разомкнутая система с П – регулятором

7.4.2 Разомкнутая система с И – регулятором

7.4.3 Разомкнутая система с ПИ-регулятором

7.5 Проверка устойчивости САУ по корням характеристического уравнения

7.5.1 Замкнутая система с П – регулятором по возмущению

7.5.2 Замкнутая система с И – регулятором по возмущению

7.5.3 Замкнутая система с ПИ – регулятором по возмущению

7.6 Проверка устойчивости САУ по критерию устойчивости Гурвица

7.6.1 Замкнутая система с П – регулятором по управлению

7.6.2 Замкнутая система с И – регулятором по управлению

7.6.3 Замкнутая система с ПИ – регулятором по управлению

7.7 Проверка устойчивости САУ по частотному критерию Михайлова

7.7.1 Замкнутая система с П – регулятором по возмущению

7.7.2 Замкнутая система с И – регулятором по возмущению

7.7.3 Замкнутая система с ПИ – регулятором по возмущению

8 ПОСТРОЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ

8.1 Постановка задачи. Методы решения

8.2 Построение переходных процессов в замкнутых системах по возмущению

8.2.1 Система с П – регулятором

8.2.2 Система с И – регулятором

8.2.3 Система с ПИ – регулятором

8.3 Построение переходных процессов в замкнутых системах по управлению

8.3.1 Система с П – регулятором

8.3.2 Система с И – регулятором

8.3.3 Система с ПИ – регулятором

9 ОЦЕНКА КАЧКСТВА РАБОТЫ САУ

9.1 Постановка задачи. Критерии качества переходных процессов

9.2 Оценка качества замкнутых САУ по возмущению

9.2.1 Система с П – регулятором

9.2.2 Система с И – регулятором

9.2.3 Система с ПИ – регулятором

9.3 Оценка качества замкнутых САУ по управлению

9.3.1 Система с П – регулятором

9.3.2 Система с И – регулятором

9.3.3 Система с ПИ – регулятором

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА


ВВЕДЕНИЕ


Автоматизация производственных процессов является одним из главнейших факторов повышения производительности общественно полезного труда и улучшения качества выпускаемой продукции. На этапе проектирования технологического процесса, установки, объекта должен быть выполнен синтез автоматической системы регулирования (АСР) по параметрам будущего объекта. При сооружении объекта необходимо смонтировать элементы АСР и установить настроечные параметры. На работающем объекте, параметры которого очень часто отличаются от проектных или существенно изменяются в процессе длительной эксплуатации, необходимо исследовать объект, построить его математическую модель в виде статической и динамической характеристик, произвести расчет параметров настройки выбранных регуляторов (а часто и выбрать тип регулятора), установить эти параметры и оценить качество функционирования системы "объект - регулятор".

Даже из перечисления работ видно, что трудоемкость проектирования и исследования любых АСР значительна. Трудоемкость вычислений настолько велика, что часто за отведенное время невозможно уложиться с полным расчетом одной АСР, не говоря уже о вариантном переборе различных АСР, о приобретении навыков в системе расчетов и о получении интуитивного понимания различных АСР. Поэтому решение поставленной задачи: за один фрагмент учебных занятий (лабораторные, практические занятия, курсовое проектирование) выполнить вариантный расчет АСР для заданного объекта (дифференциальными уравнениями, передаточной функцией или экспериментальными данными) - может быть найдено только на пути активного взаимодействия в системе "Пользователь - ЭВМ". Такая программа работ может быть дополнена экспериментальным исследованием реального объекта (или его модели, стенда) и настройкой рассчитанных параметров регулятора с проверкой работоспособности всей системы по заданным критериям качества.


1 ПОСТРОЕНИЕ СТАТИЧЕСКОЙ МОДЕЛИ ОБЪЕКТА


Статический объект - такой объект, у которого выходная величина является функцией от входной y=f(x) и не изменяется с течением времени.

Для того, чтобы знать поведение статического объекта, строят математическую модель, описывающую в аналитической форме зависимость выходного сигнала от сигнала на входе объекта.

Постановка задачи:

Для получения статической характеристики объекта регулирования необходимо выполнить следующие действия:

- задаться рядом значений входной величины x;

- для каждого xi, поданного на вход объекта выдержать время, необходимое для завершения переходного процесса;

- зарегистрировать значение выходного сигнала yi.

Для построения статической модели, статического объекта, мы имеем значения входных и соответствующих им выходных величин в таблице 1.


Таблица 1Исходные данные

I

1

2

3

4

5

6

7

8

9

X

0

1

2

3

4

5

6

7

9

Y

3

4,1

5

6

7

7,5

7,8

8,2

9


1.1 Статическая модель объекта первого порядка


Объект первого порядка (линейная модель) описывается уравнением вида y=ax+b. Для нахождения коэффициентов a и b, удовлетворяющих всем состояниям объекта регулирования составим систему линейных алгебраических уравнений.



Для решения данной системы уравнений воспользуемся методом Крамара.


X∙А=Y

XТX∙А=XТY


где - матрица с неизвестными величинами

Составим соответствующие матрицы входных и выходных сигналов:


- произведение :

- произведение :


Вычислили значения коэффициентов: а=0,668; b=3,655

Окончательно получим уравнение: y = 0,668x + 3,655

Для качественной оценки полученного полинома вычислим аналитически значения функции и сравним их с экспериментальными данными. Результаты сведем в таблице 2.


Таблица 2 – Результаты расчёта

X

0

1

2

3

4

5

6

7

9

Yзад

3

4.1

5

6

7

7.5

7.8

8.2

9

Yаналит

3.655

4.323

4.991

5.659

6.327

6.995

7.663

8.331

9.667

ΔY

0.655

0.223

-0.009

-0.341

-0.673

-0.505

-0.137

0.131

0.667

ΔY2

0.429

0.050

0.000

0.116

0.453

0.255

0.019

0.017

0.449


Случайные файлы

Файл
34664.rtf
151033.rtf
89859.rtf
90162.rtf
6310-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.