Статистическая обработка и статистический анализ данных по материалам статистического наблюдения (179293)

Посмотреть архив целиком

Министерство образования Российской Федерации

Южно-Уральский Государственный Университет

Кафедра «Экономика и финансы»











Статистическая обработка и статистический анализ данных по материалам статистического наблюдения


Пояснительная записка к курсовому проекту

по курсу «Статистика»


Руководитель: Лазарева Г.В.

Автор проекта: студент группы

ЭиУ-378 Дмитриев Д.Б..






Челябинск

2006


Введение


Статистика - это отрасль человеческой деятельности, направленная на сбор, обработку и анализ данных народно-хозяйственного учета. Сама статистика является одним из видов учета. Предметом статистики является количественная сторона массовых общественных явлений в тесной связи с качественной стороной. Главная задача статистики на современном этапе состоит в обработке достоверной информации. Обработанные определенным образом данные позволяют судить о явлении, делать прогнозы. Статистические данные способны сказать языком статистических показателей о многом в весьма яркой и убедительной форме.

В данном курсовом проекте была произведена обработка и анализ статистических данных, полученных в результате статистического наблюдения над показателем, характеризующим долю денежных доходов, расходуемых на прирост финансовых активов в 2004 г.

Актуальность статистического анализа вышеприведенного показателя можно обосновать, исходя из определения финансовых активов. Это кассовая наличность, депозиты в банках, вклады, чеки, страховые полисы, паи или долевые и т.п. Следовательно, результаты анализа можно использовать для расчета оборачиваемости денежных средств, развития экономики.

Целью данного курсового проекта является освоение инструментов статистики для дальнейшего применения в решении управленческих задач. В качестве задач курсового проекта следует выделить следующее:

  • овладение методами выполнения оценок параметров больших множеств по данным выборочного наблюдения;

  • приобретение навыков работы с большими массивами данных и навыков представления данных статистического наблюдения в удобном для восприятия, анализа и принятия решений виде;

  • развитие аналитических навыков в ходе применения вариационного метода интерпретации полученных результатов.


Сводка и группировка данных статистического наблюдения


В данной курсовой работе рассматривается следующий показатель: «Доля денежных доходов, расходуемых на прирост финансовых активов, % «в 2004г. Все данные взяты из Российского Статистического ежегодника.

На основе полученных данных выполнена простая сводка (Приложение) по указанному показателю (далее просто показатель*). Но необходимо учитывать тот факт, что рассматривается относительная, а не абсолютная величина. Следовательно, для расчета средней величины понадобятся дополнительные данные, отображающие годовые доходы населения по регионам. Поэтому в сводку добавлен еще одни столбец с необходимой информацией.

Также стоит отметить, что пришлось внести исправления по некоторым позициям исходных данных. Первоначально присутствовали 5 регионов РФ, в состав которых входило 2 субъекта. Поэтому значения показателя в этих регионах были пересчитаны. Так, в состав Архангельской области входил Ненецкий автономный округ. Доля денежных доходов, расходуемых на прирост финансовых активов, в Архангельской области составила 29, 2%, причем сюда были включены значения показателя в Ненецком автономном округе (69,7%). Для Архангельской области было вычислено значение показателя в абсолютных единицах (руб.), затем из доходов населения по области были вычтены доходы населения в Ненецком автономном округе и рассчитано среднее значение показателя по Архангельской области.


Группировка с выделением регионов со значением показателя выше и ниже среднего


Среднее значение показателя* по регионам считается как средняя взвешенная величина, где роль весов играют годовые доходы населения. Сумма годовых доходов населения по всей Российской Федерации составила 11071919713 тыс. руб. Сумма средств, идущих на прирост финансовых активов, равна 2210034642,258 тыс. руб. Следовательно, среднее значение показателя по РФ составит 19,96%. Исходя из этих данных, строим группировку с выделением регионов со значением показателя выше и ниже среднего.


Таблица 1 – Группировка с выделением регионов со значением показателя выше и ниже среднего

Группа

Количество регионов

Среднее значение, %

Показатель ниже среднего

27

12,6

Показатель выше среднего

61

28,3


По данным группировки построена Диаграмма 1. Анализ диаграммы показывает, что 69% регионов (т.е. в 61 регионе) доля денежных доходов, расходуемых на прирост финансовых активов, выше, чем средний показатель по стране. При этом среднее значение показателя в первой группе (ниже среднего) в 2,25 раза ниже, чем среднее значение во второй группе.


Диаграмма 1 Распределение субъектов РФ с выделением регионов со значением показателя выше и ниже среднего


Группировка с выделением регионов со значением показателя выше и ниже показателя в Челябинской области

В данной группировке имеет место сравнение показателя* Челябинской области с соответствующими показателями остальных регионов РФ. Выделим две группы: регионы с показателем выше и ниже показателя Челябинской области. В итоге получим:


Группа

Количество регионов

Среднее значение, %

Показатель ниже показателя по Челябинской области

30

13,0

Показатель выше показателя по Челябинской области

58

29,0


По данным группировки построена Диаграмма 2. Хотя значение показателя в Челябинской области незначительно превышает аналогичный показатель по стране, все же есть 58 регионов, в которых доля доходов, расходуемых на прирост финансовых активов, превышает соответствующую долю по Челябинской области. И лишь 34% (30) регионов имеют показатель ниже. Все вышеперечисленное позволяет сделать вывод о том, что Челябинская область по значению показателя* находится в конце списка регионов, и показатель большинства субъектов РФ превышает показатель Челябинской области.


Диаграмма 2 – Распределение субъектов РФ с выделением регионов со значением показателя выше и ниже соответствующего показателя Челябинской области


Вариационный анализ


Первый этап вариационного анализа - это построение вариационного ряда. Так как изучаемый признак относится к непрерывному виду, то необходимо строить интервальный ряд.

По формуле Стержесса определяем длину интервала. Полученное значение k=7,46. Следовательно, будет 8 интервалов. Минимальное значение признака равно 0,2%, а максимальное – 70,6%. За нижнюю границу первого интервала примем 0%, а за верхнюю границу последнего интервала – 72%. Такие границы, несомненно, способствуют легкости восприятия и наглядности распределения. Кроме того, эти границы достаточно близки к соответственно минимальному и максимальному значению признака.

Вариационный ряд имеет вид (

Таблица 2 – Вариационный ряд):


Таблица 2 – Вариационный ряд

Интервал (%)

Частота попадания

0-9

5

9-18

16

18-27

32

27-36

18

36-45

8

45-54

2

54-63

4

63-72

3


Графически распределение представлено на диаграмме (Диаграмма 3).


Диаграмма 3 – Распределение регионов по показателю*


Анализ диаграммы показывает, что распределение не подчиняется нормальному закону. Явно выражена правосторонняя, то есть положительная, асимметрия, из чего можно сделать вывод о том, что большинство значений признака сконцентрировано слева от средней и имеет значение, меньшее, чем среднее. По гистограмме можно приблизительно определить моду, значение которой попадает в середину третьего интервала и составляет приблизительно 22%.

Для построения кумуляты и огивы был произведен расчет накопленных частот.

Анализ вышеприведенного графика позволяет примерно определить медианное значение, то есть значение изучаемого признака, приходящееся на середину ранжированной совокупности. В данном случае медиана составляет приблизительно 23%.

Второй этап вариационного анализа – расчет показателей. Для этого была оформлена дополнительная таблица (Приложение Б). В итоге получились следующие значения:


Показатель

Значение

Среднее значение

27,1

Мода

22,8

Медиана

21,91

Размах вариации

70,4

Среднее линейное отклонение

10,86

Среднее квадратическое отклонение

14,23

Дисперсия

202,49

Относительный размах вариации

2,6

Относительное линейное отклонение

0,4

Коэффициент вариации

0,53

Коэффициент асимметрии

1,04






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.