Полиакриламидные флокулянты (170165)

Посмотреть архив целиком

Размещено на http://www.allbest.ru/













ПОЛИАКРИЛАМИДНЫЕ ФЛОКУЛЯНТЫ


ВВЕДЕНИЕ
полиакриламидный флокулянт очистка сточный электростанция

Флокулянты - это водорастворимые высокомолекулярные соединения, которые при введении в дисперсные системы адсорбируются или химически связываются с поверхностью частиц дисперсной фазы и объединяют частицы в агломераты (флокулы), способствуя их быстрому осаждению. История применения высокомолекулярных веществ для очистки жидкостей от взвешенных примесей уходит своими корнями в глубокую древность. Так, еще за 2000 лет до н.э. в Индии вытяжки некоторых растений, содержащие природные полимеры, применялись для очистки воды, а в Древней Греции природный полимер - яичный белок использовался для осветления вин. В XVIII-XIX веках природные полимеры - желатина и крахмал стали использовать для очистки фруктовых соков. Несмотря на столь давнюю историю, практическое применение флокуляции в промышленных процессах началось в период между 30-ми и 50-ми годами XX века. Флокулянты использовали для очистки шахтных вод от частиц угля и глины, для выделения и обезвоживания шлаков фосфоритов при получении урановых солей, для интенсификации очистки промышленных сточных вод. Но действительно широкое применение флокулянты получили с середины 50-х годов в связи с необходимостью очистки увеличивающихся объемов сточных вод и модернизации технологических процессов, связанных с разделением твердых и жидких фаз. Когда возросший спрос в флокулянтах не мог больше удовлетворяться природными полимерами, началось внедрение органических искусственных (производных крахмала и целлюлозы) и чаще синтетических полимеров. Среди синтетических полимеров наибольшее распространение и применение получила группа полиакриламидных флокулянтов (ПФ). В связи с большой практической значимостью ПФ в статье рассмотрены наиболее перспективные пути управления процессом флокуляции и эффективного использования ПФ. В современной экологии флокулянты применяют для очистки сточных вод теплоэлектростанций.

Глава 1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ДИСПЕРСНЫХ СИСТЕМАХ И ИХ УСТОЙЧИВОСТИ


Дисперсные системы гетерогенны и состоят из двух фаз, одна из которых (дисперсная фаза) раздроблена и распределена в сплошной дисперсионной среде. Дисперсные системы очень многообразны (облака, туманы, природные и сточные воды, мыльная пена, молоко, кровь). Они различаются агрегатным состоянием дисперсной фазы и дисперсионной среды (твердые, жидкие и газообразные), а также размерами частиц дисперсной фазы. Наиболее важными и распространенными являются системы с жидкой дисперсионной средой. К ним относятся природные и сточные воды, а также промышленные суспензии. По кинетическим свойствам они являются свободнодисперсными системами, в которых частицы дисперсной фазы могут свободно передвигаться. По размеру частиц дисперсии делят на грубодисперсные (> 10- 3 см), микрогетерогенные (от 10- 5 до 10- 3 см) и ультрамикрогетерогенные (от 10- 7 до 10- 5 см). Последние называются коллоидными системами.

Устойчивость дисперсных систем характеризуется неизменностью во времени равновесного распределения дисперсной фазы в объеме среды, которая определяется взаимодействием межмолекулярных сил притяжения и электростатических сил отталкивания между частицами (теория Дерягина - Ландау - Фервея - Овербека). Дисперсные системы разделяются на лиофильные и лиофобные. Первые характеризуются интенсивным взаимодействием частиц со средой и термодинамической устойчивостью (например, дисперсии мыл, глины и агрегаты высокомолекулярных соединений в воде), а для вторых интенсивность взаимодействия между частицами превышает взаимодействие частиц со средой, что придает термодинамическую неустойчивость системе (например, коллоидные растворы - золи сульфидов металлов, суспензии грубодисперсных частиц). Различают седиментационную и агрегативную устойчивость системы. Способность частиц противостоять силе тяжести определяет седиментационную устойчивость, а способность частиц противостоять агрегированию - агрегативную устойчивость. Эти два типа устойчивости взаимосвязаны, и нарушение агрегативной устойчивости снижает седиментационную устойчивость системы, способствуя осаждению частиц. Процесс слипания одинаковых по природе и заряду поверхности частиц с образованием крупных агрегатов называется коагуляцией, а агрегация разнородных частиц, отличающихся природой, знаком или величиной поверхностного заряда, называется гетерокоагуляцией. Для интенсификации процесса агрегации частиц и достижения разделения фаз дисперсной системы применяют коагулянты и флокулянты, а также их смеси.

В качестве коагулянтов используют низкомолекулярные неорганические и органические электролиты. Процесс гетерокоагуляции применяют, например, при очистке природных и промышленных сточных вод. Сущность обработки воды неорганическими коагулянтами, такими, как сернокислый алюминий или хлорное железо, заключается в гидролизе сульфатов и хлоридов с образованием положительно заряженных золей гидроксидов алюминия и железа, которые нейтрализуют отрицательно заряженные коллоидные частицы в воде, что способствует агрегации частиц и вызывает высаждение загрязняющих веществ в осадок. Дополнительное введение флокулянта после коагулянта содействует быстрому формированию крупных хлопьев, повышает плотность коагулята и степень осветления воды.

Подобен гетерокоагуляции и процесс флокуляции, происходящий при действии на дисперсные системы высокомолекулярных органических или неорганических соединений. Однако в отличие от компактных коагулятов, возникающих при действии на дисперсии низкомолекулярными электролитами, при флокуляции образуются более крупные и рыхлые агрегаты. Флокуляция является необратимым процессом по сравнению с коагуляцией, когда возможна дезагрегация (пептизация) осадка при уменьшении содержания низкомолекулярного электролита в растворе. Согласно представлениям Ла Мера, макромолекула флокулянта в результате одновременной адсорбции на двух или нескольких частицах дисперсии связывает их в агрегаты полимерными мостиками и снижает устойчивость дисперсной системы. Это мостичный механизм флокуляции.

В качестве высокомолекулярных водорастворимых флокулянтов используют неорганические полимеры (например, полимерную кремниевую кислоту), природные полимеры (производные целлюлозы, крахмал и его производные) и синтетические органические полимеры (полиэтиленоксид, поливиниловый спирт, поливинилпиридины, ПФ). Из синтетических органических полимеров наиболее часто применяют ПФ. Широкому распространению ПФ способствовало освоение в 1955 году промышленного производства акриламида (АА) в США, а в последующие годы и в других странах, включая Россию. Только в США в 1984 году было произведено 39 тыс.т ПФ, а в 1989 году их производство возросло в 1,4 раза. За тот же период в Японии производство ПФ возросло в 1,8 раза. Несмотря на значительный рост производства, увеличивающийся спрос на ПФ как по ассортименту, так и по объему производства удовлетворяется недостаточно. Так, в 1983 году только для очистки воды ПФ применяли на более чем 55 водопроводных станциях бывшей РСФСР, было использовано 200 т ПФ, а потребность в них составляла 400-500 т. В настоящее время ПФ применяют для очистки питьевой воды, природных и промышленных сточных вод, разделения, концентрирования и обезвоживания дисперсных систем в угольной, горнодобывающей, нефтяной, химической, целлюлозно-бумажной, текстильной, микробиологической и пищевой промышленности. Согласно прогнозам специалистов, лидирующее положение этой группы флокулянтов с учетом всевозрастающего объема производства и применения водорастворимых полимеров сохранится, по крайней мере в обозримом будущем. Это обусловлено их высокой флокулирующей способностью, доступностью, сравнительно низкой стоимостью и малой токсичностью. В немалой степени это связано и с успехами в управлении процессами полимеризации и сополимеризации АА, а также химическими превращениями полиакриламида (ПАА), которые позволили получить неионогенные, анионные и катионные флокулянты с регулируемыми значениями молекулярной массы, химического состава и распределения ионогенных звеньев в макромолекулах. Кроме того, это связано также с результатами исследований закономерностей флокулирующего действия ПФ на модельных и промышленных дисперсных системах.

Флокулирующая способность ПФ в промышленных дисперсных системах зависит от большого числа факторов, поэтому затруднена оценка влияния отдельных факторов на флокулирующий эффект. По этой причине возникает необходимость определения флокулирующей активности ПФ на модельных дисперсных системах, в качестве которых были использованы каолин и охра. При этом оценка влияния отдельных характеристик системы флокулянт-дисперсия на флокуляцию проводилась при сохранении неизменными других характеристик. За меру флокулирующего эффекта принимали показатель флокуляции D


D = (V - V0) / V0 ,


где V и V0 - соответственно скорости седиментации дисперсии с добавкой флокулянта и без него.

Чем больше значение параметра D, тем выше флокулирующий эффект полимерной добавки. Следует отметить несомненные преимущества использования для оценки флокулирующей способности полимера относительно параметра D вместо V, поскольку при этом устраняются эффекты, связанные с несоответствием в показателях частиц дисперсной фазы (распределение по размерам, степень асимметрии) в различных экспериментальных сериях.

Эффективность флокуляции зависит как от характеристик флокулянта (природа и концентрация полимера, молекулярная масса, химический состав и гидродинамические размеры макромолекул), так и от характеристик дисперсной системы (концентрация дисперсной фазы и состав дисперсионной среды). Влияние различных факторов на флокулирующие показатели ПФ обобщено в работе. Рассмотрим влияние основных характеристик ПФ и дисперсионных систем на процесс флокуляции.


ВЛИЯНИЕ КОНЦЕНТРАЦИИ ФЛОКУЛЯНТА


В зависимости от величины добавки один и тот же полимер может быть как флокулянтом, так и стабилизатором данной дисперсной системы. В большинстве случаев в присутствии возрастающих добавок полимеров устойчивость дисперсий сначала снижается, а после достижения минимума возрастает. Наблюдаемое снижение устойчивости системы (нисходящие ветви кривых) с ростом концентрации ПАА является следствием усиления агрегации частиц в результате их связывания макромолекулами и соответствует области флокуляции. При избытке ПАА происходят структурирование и стабилизация агрегативной и седиментационной устойчивости дисперсной системы (восходящие ветви кривых). Обычно дестабилизация системы наблюдается при малых добавках полимера (от тысячных до миллионных долей от массы твердой фазы), что свидетельствует о высокой эффективности флокулянтов.


ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И ГИДРОДИНАМИЧЕСКОГО РАЗМЕРА МАКРОМОЛЕКУЛ ФЛОКУЛЯНТА


Одной из наиболее важных характеристик флокулянтов, существенно влияющих на седиментационную устойчивость дисперсных систем, является молекулярная масса (ММ) флокулянта. Значение ММ у ПФ может варьировать в пределах от десятков тысяч до нескольких миллионов. Как правило, с увеличением ММ флокулирующая способность ПФ возрастает, что позволяет снизить дозу полимера. Это обусловлено возможностью больших макромолекул связывать большее число частиц в крупные хлопья посредством полимерных мостиков между частицами. Расчеты показывают, что только двукратное увеличение размеров макромолекул должно вызывать увеличение скорости флокуляции на один-два порядка. Следовательно, флокулирующая способность полимера определяется не столько степенью полимеризации, сколько размерами, занимаемыми макромолекулами в растворенном и адсорбированном состоянии. Рассчитано, что для эффективной флокуляции суспензий протяженность цепочек должна составлять 10- 7 м, что соответствует характеристической вязкости раствора полимера h > 500 см3/г. На суспензиях каолина показано, что у привитых сополимеров, основная цепь которых построена из звеньев акриловой кислоты, а боковые цепи состоят из звеньев АА (с равной степенью полимеризации и одинаковыми функциональными группами, а также с идентичными адсорбционными свойствами), флокулирующее действие снижается с уменьшением гидродинамических объемов макромолекул. Установлено, что образцы частично гидролизованного ПАА (ГПАА) с разветвленными макромолекулами значительно уступают по флокулирующей активности образцам с линейными макромолекулами, поскольку имеют меньшие гидродинамические размеры.


Случайные файлы

Файл
132357.rtf
122602.rtf
96766.rtf
185275.rtf
121124.rtf