Использование радиоактивационного метода в анализе объектов окружающей природной среды (169542)

Посмотреть архив целиком










«Использование радиоактивационного метода в анализе объектов окружающей природной среды»



Содержание


Введение

Глава 1. Теоретические основы радиоактивационного анализа

Глава 2. Применение радиоактивационного анализа

Глава 3. Современное оборудование

Литература



ВВЕДЕНИЕ


Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе.

Основными достоинствами аналитических методов, основанных на измерении радиоактивного излучения, являются низкий порог обнаружения анализируемого элемента и широкая универсальность. Радиоактивационный анализ имеет абсолютно низший порог обнаружения среди всех других аналитических методов (10-15 г). Достоинством некоторых радиометрических методик является анализ без разрушения образца, а методов, основанных на измерении естественной радиоактивности, – быстрота анализа. Ценная особенность радиометрического метода изотопного разведения заключена в возможности анализа смеси близких по химико-аналитическим свойствам элементов, таких, как цирконий – гафний, ниобий – тантал и др.

Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью так называемых манипуляторов в специальных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.

Радиоактивные изотопы применяются в следующих методах анализа:

метод осаждения в присутствии радиоактивного элемента; метод изотопного разбавления; радиометрическое титрование; активационный анализ; определения, основанные на измерении радиоактивности изотопов, встречающихся в природе.



ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАДИОАКТИВАЦИОННОГО АНАЛИЗА (АКТИВАЦИОННОГО АНАЛИЗА)


Активационный анализ относится к основным ядерно-физическим методам обнаружения и определения содержания элементов в различных природных и техногенных материалах и объектах окружающей среды. Метод базируется на фундаментальных понятиях и данных о структуре атомных ядер, сечениях ядерных реакций, схемах и вероятностях распада радионуклидов, энергиях излучения, а также на современных способах разделения и предварительного концентрирования микроэлементов. Широкое распространение активационный анализ получил благодаря таким преимуществам перед другими методами, как низкие пределы обнаружения элементов (10–12–10–13 г), экспрессность и воспроизводимость анализа, возможность неразрушающего одновременного определения в пробе 20 и более элементов. Применение специальных химических методик и аппаратурных приемов позволяет определять фоновое содержание металлов в приземном слое атмосферы, следовые количества примесей в биологических объектах, особо чистых веществах и устанавливать химическую форму элементов в исследуемых пробах. Большое значение имеет возможность проведения анализа в диапазоне массы образцов от нескольких микрограммов (важно для труднодоступных образцов, например, метеоритов или лунного грунта) до нескольких сотен граммов. Следует отметить, что относительная погрешность определения содержания элементов в пробах активационным методом не выходит за пределы 10%, а воспроизводимость составляет 5–15% и может быть доведена до 0,1–0,5% при серийных анализах. В настоящее время имеется целый ряд разновидностей активационного анализа. Однако общим для всех этих методов является активация вещества нейтронами, гамма-квантами или заряженными частицами и последующая регистрация спектрального состава излучения возбужденных ядер или образовавшихся радиоактивных изотопов. Наиболее распространены первые два метода. Активационный анализ на заряженных частицах, в связи с их малым пробегом в веществе, используется главным образом для анализа тонких слоев и при изучении поверхностных эффектов.[1]

Для осуществления активационного анализа исследуемый образец (проба) подвергается облучению потоком бомбардирующих частиц, например нейтронов в ядерном реакторе. При этом образуются как стабильные, так и радиоактивные нуклиды (радионуклиды), характеризующиеся различными временами жизни и энергиями распада. Радиоактивность облученного образца прямо пропорциональна количеству образовавшихся радионуклидов. Поэтому количество радионуклида удобно выражать его активностью A, т. е. числом распадов в единицу времени, т.к. эту величину можно измерить с помощью различных детекторов. Уравнение для вычисления активности радионуклида выглядит так:


. (1)


Зная активность радионуклида A, содержащегося в образце на данный момент времени, можно рассчитать количество радиоактивных ядер и их массу:


, (2)


где m — масса радиоактивных ядер (г), M — массовое число радиоизотопа.

Скорость накопления радионуклида во время облучения исследуемой пробы можно описать дифференциальным уравнением:



, (3)


где σФNx — скорость образования радиоактивных ядер в пробе, λN — скорость их распада, Ф — плотность потока бомбардирующих частиц (см–2 с-1), σ — сечение реакции (см2), Nx — количество стабильного изотопа анализируемого элемента в облучаемой пробе.

Интегрируя уравнение (3), получим выражение для вычисления активности радионуклида, накопившегося в пробе за время облучения,


, (4)


где N — количество накопившихся радиоактивных ядер; tобл — время облучения.

Если время облучения намного больше периода полураспада tобл>>(8–10)Т1/2, то экспоненциальное слагаемое в (4) пренебрежимо мал по сравнению с единицей, и тогда


. (5)


Активность  называется активностью насыщения или равновесной активностью.

Обычно после облучения какое-то время затрачивается на транспортировку пробы к установке детектирования, или проба специально выдерживается для распада мешающих анализу, более короткоживущих продуктов ядерных реакций. В результате распада активность определяемых радионуклидов тоже уменьшается в соответствии с выражением (1):


, (6)


где Aвыд — активность определяемого нуклида после выдержки; tвыд — время между концом облучения и началом измерения активности.

Вывод уравнения (4) сделан без учета уменьшения количества («выгорания») исследуемых стабильных ядер Nx в пробе при облучении, поскольку «выгорание» незначительно и заметно только для изотопов с большим сечением взаимодействия и при длительном облучении. Было также предположено, что плотность потока активирующих частиц во время облучения не меняется.

Ежегодно в мире проводится более сотни тысяч активационных анализов. В качестве примера можно упомянуть нейтронно-активационный анализ волос Исаака Ньютона, который был проведен в английском ядерном центре в Олдермастоне. Для исследования на присутствие золота и ртути облучение нейтронами продолжалось 5 дней, а на мышьяк, сурьму и серебро - до 14 дней. Оказалось, что содержание металлов с высокой токсичностью значительно превышало нормальный уровень, так количество ртути в волосах Ньютона в 40 раз превосходило норму. Полученные данные подтверждают предположение о том, что Ньютон в течение длительного времени болел вследствие ртутного отравления.

Инструментальный и радиохимический анализ. Облучение исследуемых проб приводит к образованию смеси радионуклидов различных химических элементов, входящих в пробу. Идентификацию отдельных радионуклидов осуществляют либо по их ядерно-физическим свойствам (энергия и вид испускаемых частиц, период полураспада), применяя для этих целей счетчики гамма-квантов и β-частиц и гамма-спектрометры, либо измеряя активность радионуклида в течение какого-то времени для установления его периода полураспада. Данные об интенсивности отдельных видов излучения, принадлежность которых установлена, используют для расчета содержания элементов в исследуемой пробе. На Рис.1 показан пример определения элементного состава образца по спектрам гамма-излучения ядер примеси.



Рис.1. Определение элементного состава образца по спектрам гамма-излучения.


Количество зарегистрированных в процессе анализа импульсов с учетом уменьшения активности во время измерения выражается следующим соотношением:


, (7)


где mx — масса определяемого элемента в пробе, Y — относительная распространенность изотопа, ν — квантовый выход излучения, ε — эффективность регистрации излучения данного вида, tизм — время измерения.

Если период полураспада радионуклида достаточно велик, т.е.  то выражение (7) принимает вид:


. (8)


Используя выражения (7) или (8), по измеренным значениям ΔА вычисляют содержание исследуемого элемента mx в пробе. Заметим, что из последнего уравнения (8) следует, что с увеличением периода полураспада уменьшается число полезных зарегистрированных сигналов. Следовательно, экспрессность анализа будет выше при анализе проб по короткоживущим радионуклидам.


Случайные файлы

Файл
39135.rtf
18160.rtf
180604.rtf
30928-1.rtf
13824-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.