Сорбируемость меди на бурых углях, сапропелях и выделенных из них гуминовых кислотах (166452)

Посмотреть архив целиком

Министерство образования и науки Российской Федерации

Научно-образовательный центр

«ЭКОБИОТЕХНОЛОГИЯ»

Тульский государственный университет









КУРСОВАЯ РАБОТА ПО аналитической химии


Сорбируемость меди на бурых углях, сапропелях и выделенных из них гуминовых кислотах



Студент группы 430441 _____________ Агеева Е.Д

(подпись, дата)

Руководитель работы

_____________ к.х.н., с.н.с. Рогова Т.В

(подпись, дата)

Научный консультант ______________ к.б.н. Пунтус И.Ф

(подпись, дата)

Заведующий кафедрой _____________ Алфёров В.А.

(подпись, дата)


Тула, 2006г.


1. Введение


Проблема очистки воды для хозяйственно - питьевых нужд от токсикантов, в частности, от соединений тяжелых металлов, является весьма актуальной природоохранной проблемой в Тульском регионе, в котором сосредоточено множество крупных промышленных предприятий.

Из литературных источников известно, что в качестве сорбентов могут служить практически все мелкодисперсные твердые вещества, обладающие развитой поверхностью – бурые угли, сапропели, горелая порода шахтных выработок и другие. Изучению таких природных сорбентов, как сапропели, бурый уголь и гуминовые кислоты уделяется большое внимание. Множество научных работ посвящены изучению способов выделения, структуры и свойств гуминовых кислот, а также изучение их биологической активности. Были выявлены и сформулированы функции данных веществ, одна из которых, протекторная, играет важную экологическую роль, заключающуюся в способности гумусовых кислот связывать в малоподвижные или труднодиссоциирующие соединения токсичных элементов и не давать проникать токсикантам в торф, растения и т.п.

Целью работы является изучение сорбируемости меди на буром угле, сапропелях и выделенных из них гуминовых кислотах и минеральном сорбенте на основе горелой породы.



2. Литературный обзор


2.1 Сорбция меди на различных сорбентах


2.1.1 Сравнение сорбируемости меди на синтетических катионитах и анионитах

Содержание меди в промышленных стоках даже после проведения реагентной очистки превышает предельно допустимую концентрацию на 2-5 порядков. В связи с этим остро стоит проблема доочистки этих стоков до санитарных норм, традиционно решаемая с использованием ионитов.

В реальных растворах, полученных на установке реагентной очистки Ефремовского завода СК после проведения реагентной очистки натриевой щелочью присутствуют ионы меди (10 - 2000 мг/дм3), натрия (7 - 24 г/дм3), ацетат-ионы (0,5-3,5 моль/дм3) и аммиак (1-10 г/дм3). Для оптимизации процесса доочистки стоков до санитарных норм была исследована сорбируемость меди в динамическом и статическом режимах на синтетических сульфокатионитах КУ-1, КУ-2-8, КУ-2-20 (в Н- и Na-форме) и анионитах АВ-16Г, АВ-17-8, ЭДЭ-10П (в ОН- и Сl-форме).

Сравнение сорбируемости меди на катионитах в динамических условиях показало, что максимальные ее значения 2-4 мэкв/г (при концентрации меди в исходном растворе 2 г/дм3), сохраняющиеся при регенерации, имеют сильнокислотные катиониты КУ-2-8 и КУ-1 в Н-форме. Они проявляют высокую селективность к ионам меди даже в присутствии значительных концентраций катионов - натрия, вступающих в конкурирующее равновесие ионного обмена наряду с катионами меди (при мольных отношениях Na/Cu не превышающих 25). Показано, что при увеличении степени сшивки при переходе от КУ-2-8 к КУ-2-20, а также переходе от Н-формы к Na-форме катионитов сорбируемость меди значительно уменьшается.

Сорбируемость меди в динамических условиях на анионитах увеличивается по ряду : АВ-17-8< ЭДЭ-10П <АВ-16Г и для АВ –16Г достигает величин 3 и 4 мэкв/г (для солевой и ОН- форм соответственно), сопоставимых с сорбируемостью меди на катионитах КУ-2-8 и КУ-1. Исследование регенерации отработанных анионитов при обработке их раствором щелочи показали, что медь десорбируется лишь в незначительной степени, что объясняется образования прочных комплексов меди с функциональными группами, в частности этилендиаминными, входящими в состав анионитов. Величины сорбируемости меди из реальных стоков для всех ионитов оказываются значительно ниже значений приводимых в литературе для модельных растворов, содержащих только ионы меди, за счет протекания конкурирующего ионого обмена с катионами натрия или ацетат-ионами, а также процессов комплексообразования меди с аммиаком и ацетат-ионами.


2.1.2 Сорбируемость меди на природных сорбентах: сапропелях, гуминовых кислотах, буром угле, опилках

Исследование состава и свойств бурых углей, сапропелей и торфов, а также выделенных из них гуминовых кислот привлекает большое внимание в связи с возможностями применения их в сельском хозяйстве, животноводстве, птицеводстве, рыбоводстве, ветеринарии, медицине и других отраслях. Имеющиеся в литературе данные касаются, прежде всего, способов выделения, состава и физико-химических свойств гуминовых кислот различного происхождения, в то время как их сорбционным и ионообменным свойствам посвящены лишь немногочисленные публикации.

Гуминовые кислоты, выделенные из Белгородского сапропеля сорбируют медь даже несколько хуже, чем исходный сапропель (сорбируемость составляет 3,0-3,2 и 3,6 мэкв/г соответственно при соотношении объема раствора к массе сорбента равном 600 см3/г и концентрации меди в исходном растворе 1мг/мл). Это доказывает, что в процессе сорбции меди участвуют активные центры, находящиеся как органической, так и в минеральной части сапропеля. Об этом свидетельствует и тот факт, что на минеральном сорбенте - горелых шахтных породах (при полном отсутствии органической массы) величины сорбции меди оказывались соизмеримыми со значениями сорбируемости на сапропелях и гуминовых кислотах.

В порядке уменьшения сорбируемости меди из сульфатных растворов с рН=4,5 сорбенты можно расположить в ряд: опилки > бурый уголь > сапропель горелая шахтная порода. Интересно сравнить его с полученным нами ранее [4,5] в статических условиях рядом сорбции меди из растворов с рН=12, моделирующих медьсодержащие жидкие отходы производства синтетического каучука и содержащих наряду с медью также аммиак, ионы натрия и ацетат-ионы: активированный уголь > горелая шахтная порода природный цеолит клиноптилолит > бурый уголь > опилки. Очевидно, что изменение условий сорбции (наличие в растворе аммиака и ацетат-ионов, образующих прочные комплексы с медью, а также переход из кислой среды в щелочную) приводят не только к изменению значений сорбируемости, но и меняют очередность сорбентов в ряду.

Таким образом, исследование сорбируемости меди на бурых углях и сапропелях указывает на возможность их применения до доочистки медьсодержащих промышленных стоков до санитарных норм. [1].

Сорбция меди возможна на многих природных твердых материалах, обладающих мелкодисперсной структурой и высокоразвитой поверхностью. Эффективными является применение активных углей разных марок. Окисление (чаще всего HNO3) за счет образования на их поверхности функциональных групп.

Активные угли имеют сравнительно низкую себестоимость по сравнению с ионитами. Они отличаются сильно пористой развитой структурой. Удельная поверхность пор достигает 1000-1800 м3/г для микропор размером 1-2 нм, для пор переходного размера (5-50 нм) - 100 м3/г, для микропор (>100 нм) - 1 м3/г. [2].

Путем последовательного метилирования карбоксильных и фенольных групп окисленного угля СКТ было найдено, что в поглощении, например, ионов кальция, свинца и меди принимают участие как карбоксильные, так и фенольные группы. После метилирования окисленного угля метилсульфатом его емкость уменьшилась на 25%, а метилирование метанолом привело к ее снижению на 75%, можно сделать вывод, что уголь, из которого последовательно связаны карбоксильные и фенольные группы. [3].

Находят применение бурые угли, как измельченные до определенной фракции, так и отделенные флотационным методом.

Измельченные до 0,1- 0,5 мм бурые и ископаемые угли, как правило, имеют окисленную углеродную поверхность и сорбируют медь после промывки 1-10 %-ным раствором кислоты, водной промывки и сушки. При кислотной обработке карбонизата, полученного обугливанием растений также может быть получен сорбент для тяжелых металлов. [4].

Наиболее перспективными твердыми поглотителями являются минеральные адсорбенты, на основе которых можно получать как очень дешевые адсорбенты одноразового действия, так и более дорогие поглотители с высокой механической прочностью, развитой пористой структурой и определенной химией поверхности. Интерес к модифицированным минеральным сорбентам вызван их специфическими свойствами: неорганический носитель придает сорбенту такие свойства, как высокая скорость установления равновесия (в случае микропористых сорбентов), химическая устойчивость к агрессивным средам, механическая прочность; модификатор обеспечивает селективность и полноту связывания ионов.

Существуют литературные данные об исследовании по модификации микропористого алюмосиликатного материала на основе горелой породы с использованием растворов гидроксида калия. [5].

В качестве носителя для получения модифицированного сорбента была использована горелая порода месторождения “Дальние Горы” г. Киселевска, имеющая следующий состав, %: SiO2 – 68,2; Al2O3 - 21,5; Fe2O3 - 4,7; остальное - 5,6 и образующаяся в результате пожара вызванного самовозгоранием угольных терриконов. [6].

Сорбцию меди, кадмия и свинца изучали в статических условиях из растворов их солей с концентрацией 103М. Количество сорбированных ионов рассчитывали по формуле:


, мг/мл


С целью перевода испытуемого сорбента в модифицированную форму, позволяющую повысить емкость природного образца, горелую породу обрабатывали растворами щелочи, затем отмывали дистиллированной водой до нейтрального значения pH и проводили сорбцию металлов при нормальных условиях. В процессе модификации значения pH варьировались от 8 до 14. Эксперимент проводили при температуре 20С и в интервале концентраций от 10-3 до 3,110-5М. В результате исследования были получены следующие результаты:


Результаты сорбируемости меди, свинца и кадмия Таблица1

Сорбируемый Металл

Количество сорбированных ионов,А, мг/мл

Немодиф.

Модиф.

Медь

10,4

14,2

Свинец

32,6

45,5

Кадмий

17,94

19,95


По мнению авторов, изученные сорбенты (модифицированная и немодифицированная) порода обладают значительной сорбционной емкостью, что позволяет использовать эти материалы в технологии для доочистки воды. [6].



2.2. Гуминовые кислоты


2.2.1 Методы извлечения и структура гуминовых кислот


2.2.1.1 Гуминовые кислоты сапропелей

ГК сапропелей — вещества, извлекаемые растворами щелочей, представляют большой интерес в научном и практическом плане. Содержание гуминовых веществ изменяется в пределах 17-62%, причем они более чем наполовину состоят их гуминовых кислот. ГК сапропелей отличаются от торфяных и угольных даже по внешним признакам, поэтому некоторые исследователи называют их "белым гумусом". В составе сапропелевых ГК больше водорода и азота, что связано с особенностями исходного биологического материала, обогащенного белковыми и жировыми веществами. Аминокислоты входят как непременный компонент во все гуминовые и фульвокислоты. Аминокислота, непосредственно связанная с фенольными кольцом, не отщепляются при гидролизе при обычных условиях, что говорит о структурной роли аминокислот в построении гуминовых веществ. Другой источник азота – порфирины. Их особенность – содержание пятичленных пиррольных циклов, которые могут участвовать в гумификации. Сочетанием химических и инструментальных методов исследования было показано, что гуминовые кислоты сапропелей, в отличие от ГК почв, торфов и углей, представлены в основном гидролизуемым полипептидно-углеводным комплексом (16 аминокислот и 5 углеводов (в сочетании с соединениями жирного ряда при малом количестве простых ароматических единиц.


Случайные файлы

Файл
122955.rtf
158857.rtf
30549.rtf
115359.rtf
42867.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.