Композиционные хемосорбционные волокнистые материалы "Поликон К", наполненные углеродными волокнами (166398)

Посмотреть архив целиком

Федеральное агентство по образованию Российской Федерации

Государственный технический университет

Технологический институт

Кафедра химической технологии





Курсовая работа по ХТПКМ

на тему:


Композиционные хемосорбционные волокнистые материалы "Поликон К", наполненные углеродными волокнами"






Выполнил:

Проверил:










2008


Содержание


Введение

1. Углеродные волокна – перспективные наполнители ПКМ

1.1. Получение углеродных волокон на основе ПАН волокон

1.2. Получение углеродных волокон на основе вискозных волокон

2. Структура углеродных волокон

3. Влияние условий модифицирования поверхности УВ на ее активность и пористую структуру

4. Адгезия углеродных волокон к полимерной матрице

5. Углеродные волокнистые материалы с противооксидными покрытиями

6. Сырье, используемое в производстве композиционных хемосорбционных волокнистых материалов «Поликон»

7. Особенности способа поликонденсационного наполнения

8. Физико-химические особенности синтеза

Заключение

Список используемой литературы


Введение


Развитие промышленности, успехи химии в области органического синтеза привели к тому, что перед человечеством остро встала проблема охраны окружающей среды и ее защиты от последствий собственной деятельности. В окружающую среду внедряется все больше и больше новых веществ, чуждых ей, токсичных и опасных для живых организмов. Часть из них не включается в естественный круговорот и накапливается в биосфере, приводя к нежелательным экологическим последствиям.

На одном из первых мест стоит загрязнение воздушного бассейна соединениями азота, фтора, серы и хлора. Водоемы подвергаются загрязнению соединениями цинка, меди, ртути, а также целым рядом органических веществ, таких как СПАВы, фенолы, масло- и нефтепродукты и. т. д., нарушающих природный баланс водной среды.

В связи с этим, для осуществления радикальных методов защиты окружающей среды возникает необходимость создания новых, наряду с уже известными, высокоэффективных хемосорбционных материалов для извлечения антропогенных загрязнений из промышленных и бытовых стоков.

Исследования, направленные на разработку и усовершенствование нового класса хемосорбционных материалов - композиционных ионообменных волокнистых материалов, - с целью увеличения селективности, сорбционных характеристик и повышения долговечности работы, являются очень перспективными.

На кафедре химической технологии Энгельсского технологического института был разработан новый класс хемосорбентов, которые получают по малостадийной технологии методом поликонденсационного наполнения. При поликонденсационном наполнении после пропитки химических волокон мономерами протекает поликонденсация термореактивных олигомеров в структуре и на поверхности волокон.


Углеродные волокна – перспективные наполнители ПКМ


Углеродное волокно состоит главным образом из углерода. Получают их термической обработкой химических волокон. УВ обладают рядом преимуществ, таких как высокая механическая прочность, устойчив к действию высоких температур, химических реагентов, ультрафиолетового излучения. Они устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода, Их предельная температура эксплуатации в воздушной среде составляет 300-350 0С. [3].

Иногда выделяют несколько типов УВ в зависимости от их свойств.


Таблица 1.Характеристики углеродных волокон

Показатель

Волокна

Угольные низко-модульные

Графитиро-ванные низко-модульные

Графитиро-ванные средне-модульные

Графитиро-ванные высоко-модульные

Графитиро-ванные высоко-прочные

Плотность, г/см3

1,5-1,6

1,4-1,6

1,4-1,7

1,6-2,0

1,7-1,9

Модуль упругости, ГПа

30-40

40-60

70-180

300-500

200-300

Прочность на разрыв, ГПа

0,4-1,0

0,6-1,0

1,0-2,5

1,5-3,0

2,0-4,0

Относит. удлинение, %

2,0-2,5

1,5-2,0

1,2-1,5

0,5-0,6

1,0-1,3


1.1. Получение углеродных волокон на основе ПАН волокон


Процесс получения УВ из ПАН волокна включает текстильную подготовку материала, окисление, высокотемпературную обработку (карбонизация и графитация), подготовку поверхности УВ и получение препрегов.

Исследования, связанные с использованием в качестве предматериала ПАН волокон, впервые были начаты в СССР . В то время в научной и патентной литературе отсутствовали сведения о применении ПАН волокон для этих целей. Затем интенсивные исследования начали проводиться в Японии и несколько позже в ряде научных учреждений Англии с использованием волокна куртель . В 1966 г. появилась первая научная публикация Ватта на эту тему. В США на первом этапе создания производства УВ сырьем служило ВВ. Лишь в конце 60-х годов и начале 70-х годов ряд фирм США начал производство УВМ на основе ПАН волокон по лицензиям японских и английских фирм. В настоящее время высокопрочное высокомодульное волокно вырабатывается в Англии, Японии, США и Франции.

Свойства исходного ПАН волокна оказывают большое влияние на качество УВ. К числу важнейших его показателей относятся: химический состав, структура, механические свойства и дефекты.

Объектами исследования служили ПАН-гомоволомно и волокна из сополимеров акрилонитрила. Изучались промышленные волокна, содержащие в качестве сомономера метилакрилат, метилметакрилат, винил-ацетат и др. Введение сомономеров ускоряет циклизацию и снижает тепловой эффект в процессе термоокисления, что облегчает проведение этой стадии получения [3]

Несмотря на большое число работ, в литературе не приводится сведений о том, какой тип волокна находит практическое применение. В Англии основным сырьем служит волокно куртель.

Существует несколько способов получения ПАН-волокон, отличающихся типом применяемого растворителя и методом формования (сухой и мокрый), от которых зависят структура и морфология волокна. Эти факторы влияют на термохимические превращения полимера, образование структуры УВ и его свойства. Условия формования (осаждения полимера) влияют на надмолекулярную организацию, величину поверхности, температурный интервал экзотермических эффектов, максимальную скорость потери массы и количество поглощенного при термоокислении кислорода. Установлено, что условия формования имеют большее значение, чем химический состав ПАН волокна.[4]

Высокие степени вытягивания в различных средах повышают ориентацию и прочность ПАН волокон, что благоприятно сказывается на механических свойствах УВ. Действительно, по мере увеличения прочности ПАН волокна заметно возрастают прочность и модуль Юнга УВ. Аналогичная закономерность установлена в ряде других работ Особенно существенное значение имеет ориентация ПАН волокна, так как организованные надмолекулярные образования служат матрицей при формировании структуры углерода и обусловливают механические свойства УВ. Однако вытягивание ПАН волокна не должно превышать оптимальных значений, выше которых начинают возрастать дефекты ПАН волокна, дефекты обычно переходят на УВ и снижают его прочность. Необходимость применения высокопрочных ПАН волокон не является бесспорной.

Поскольку во время окисления волокно подвергается вытягиванию, следует учитывать термомеханические свойства ПАН волокна. В работе указывается, что при нагревании в изотермических условиях (до 320 °С) выявлено шесть областей различного поведения ПАН волокна.

На свойства УВ большое влияние оказывают загрязнения ПАН волокна. В результате выгорания инородных включений во время карбонизации на поверхности УВ возникают дефекты, снижающие его прочность. В этом плане заслуживает внимание работа, в которой показано, что при получении ПАН волокна в воздушной среде, очищенной от пыли, повышается прочность полученного из него УВ. Поэтому следует отдать предпочтение прямому методу получения ПАН волокна из растворов, так как в этом случае оно менее загрязнено инородными частицами.[3]

При использовании УВ для изготовления конструкционных композитов особое внимание уделяется коэффициенту вариации механических свойств УВ, особенно по прочности. Весомый вклад в этот показатель вносит исходное волокно. Неоднородность ПАН волокна возникает главным образом на стадии формования. При формовании сухим методом получается более однородное волокно, чем при формовании мокрым методом . Основным дефектом ПАН волокна является неравномерность сечения, или площади поперечного среза, волокна. Поэтому наблюдается большая разница в коэффициентах вариации, определяемых для комплексных или элементарных нитей. В последнем случае он гораздо выше.

На технико-экономические показатели влияет линейная плотность нити ПАН волокна В; с ее увеличением снижается стоимость УВ.


1.1.2. Термическое окисление ПАН-волокна

Окисление — важнейшая стадия технологического процесса получения УВ. Предварительное окисление облегчает дегидрирование полимера и, что особенно важно, создает условия для образования предструктуры, обеспечивающей создание оптимальной структуры углерода и приобретение УВ ценных механических свойств. Превратить ПАН волокна в УВ можно, не прибегая к окислению, но практически этот способ неприемлем, так как при этом увеличивается длительность технологического цикла, происходит более глубокая деструкция полимера, сопровождающаяся снижением выхода углерода.


Случайные файлы

Файл
138379.rtf
14345-1.rtf
23353.rtf
125137.rtf
143475.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.