Получение сорбционных материалов с биогенными элементами (166266)

Посмотреть архив целиком












КУРСОВАЯ РАБОТА

на тему: «Получение сорбционных материалов

с биогенными элементами».







Выполнила студентка МБХФ отд. химия

5 курса группы Бекдурдыева К.


Научный руководитель

к.б.н. Филь А.А.












СОДЕРЖАНИЕ


Введение 3

Теоретическая часть

1.1. Особенности органических полимерных носителей, используемых для иммобилизации биологически активных веществ 5

1.2. Модифицирование поверхности твердых носителей макромолекулами биополимеров 10

1.3. Использование сорбционных материалов в медицине и медицинской промышленности 14

Методическая часть

2.1.Характеристика реагентов используемых для получения 18

сорбентов

2.2. Получение казеина 18

2.3. Метод определения удельной адсорбции энтеросорбента по иону кобальта (II) 19

Экспериментальная часть

3.1. Синтез энтеросорбентов 20

3.2. Исследования сорбционной емкости разработанных сорбентов относительно ионов кобальта (II) 24

Заключение 26

Список используемой литературы 27










Введение

Одно из основных направлений биотехнологии предусматривает разработку сорбционных материалов и дальнейшее их применение в биохимии (разделение и очистка веществ), экологии (мониторинг окружающей среды), в медицине и медицинской промышленности в качестве незаменимых материалов для гемо - и энтеросорбции.

Метод энтеросорбции начал активно соперничать с гемосорбцией (управляемое выделение из крови нежелательных компонентов-токсинов, экзогенных ядов, вредных продуктов метаболизма) в связи с рядом преимуществ, основными из которых являются:

  • отсутствие необходимости оперативного вмешательства и связанного с этим риска возможных осложнений, характерных для гемосорбции;

  • отсутствие прямого повреждающего контакта с биологическими жидкостями (кровь, лимфа);

  • возможность широкого использования сорбционной терапии при амбулаторном лечении в полевых и обычных домашних условиях.

В связи с высокими требованиями к чистоте биотехнологических продуктов все более актуальной становится задача использования новых сорбционных материалов в хроматографии. Ключевым моментом в этом вопросе является создание механически стабильных сорбентов, способных обеспечивать высокий выход биологически активных целевых продуктов и обладающих способностью к многократному использованию.

Для решения выше изложенных задач наиболее перспективными являются энтеросорбенты, например белки, которые в организме высших животных выполняют транспортные функции. Белки, являясь полисорбентами из-за присутствия большого числа возможных центров связывания, расположенных в боковых радикалах аминокислот обладают вместе с тем определенной специфичностью. Блокирование отдельных функциональных групп белков посредством использования растворов с блокираторами (ингибиторами или лигандами), а так же иммобилизация их на жесткой матрице позволит получить энтеросорбенты обладающие специфичностью, стабильностью и высокой сорбционной емкостью.

Таким образом, цель данной научно-исследовательской работы - разработка биотехнологии сорбционных материалов на основе белковых систем, иммобилизованных на жесткой матрице с введением в них биогенных элементов.

В связи с поставленной целью нами решались следующие задачи:

- синтез сорбента на основе микрокристаллической целлюлозы, модифицированной белковым комплексом казеина;

- исследование сорбционных свойств разработанных сорбентов на примере ионов кобальта (II);



















Теоретическая часть


1.1. Особенности органических полимерных носителей, используемых для иммобилизации биологически активных веществ


Целлюлоза – наиболее высокомолекулярный полисахарид, линейный β-1,4-глюкан (С6Н10О5)n с видовой специфичностью и степенью полимеризации [23].

Дополнительные данные, полученные методами частичного гидролиза и ацидолиза [11] позволяют утверждать, что вероятность появления других типов связей в молекуле целлюлозы не превышают одной связи на 1000 моноглюкозидных звеньев. Степень полимеризации природных препаратов целлюлозы, полученных в мягких условиях, может превышать 10000, что соответствует уровню значений молекулярной массы порядка 106 [24].. При более жестких режимах обработки, имеющих место при выделении целлюлозы из древесины, величина степени полимеризации существенно падает и обычно колеблется в пределах 300-5500 [4], приводя к соответствующему снижению среднего значения молекулярной массы.

Анализ экспериментальных теплот сгорания свидетельствует о физической и химической неоднородности целлюлозы. Химическая неоднородность обусловлена в основном наличием в макромолекулах целлюлозы “чужих” звеньев, представляющих собой остатки изомерных полисахаридов (маннана, галактана) или окисленных фрагментов полимерной цепи [19].. Физическая же неоднородность вызвана главным образом адсорбированной водой [17].

Для целлюлозы характерны высокая степень гидрофильности и склонность к образованию многочисленных водородных связей между нитями полимеров. Наличие множества гидроксильных групп позволяет легко модифицировать целлюлозу путем химического присоединения разнообразных заместителей (таблица 1). Так известен способ получения иммуносорбента, включающий обработку пористых целлюлозных шариков метапериодатом натрия [10]. В результате обработки на поверхности сорбента образуются альдегидные группы, количество которых не снижается при хранении в течение двух лет. Авторы [9] предложили получать сорбент путем хлорирования целлюлозного волокнистого материала хлорокисью фосфата в среде диметилформамида при нагревании. Данный носитель может найти применение при очистке сточных вод, фармакологических растворов от тяжелых металлов, а также для концентрирования тяжелых металлов при анализе объектов окружающей среды.

Особый интерес представляет введение в макромолекулу целлюлозы или других полисахаридов сульфгидрильной группы, что придает препаратам целлюлозы электронно-обменные свойства. Были также синтезированы производные, содержащие хлор, йод, нитрильные, амидные и алифатические аминогруппы [15].

Предложен способ [20] модификации полисахаридов обработкой диизоцианатами с последующей дополнительной обработкой бифункциональными или монофункциональными соединениями в стехиометрическом избытке. В качестве бифункциональных соединений используют алифатические диамины и дикарбоновые кислоты С28, а в качестве монофункциональных соединений – алифатические спирты С28.

В качестве нерастворимого полисахарида применяли целлюлозу, агарозу, декстран, хитин, крахмал и их производные в виде порошков или гранул. Реакция с диизоцианатом проводилась в безводных органических растворителях, не содержащих подвижных атомов водорода, например, в диоксане, ацетоне, хлороформе. В зависимости от длины алифатической цепочки получали носители с различной отдаленностью функциональных групп (-NH2, СООН и др.) от полисахаридной матрицы.

Таблица 1

Некоторые производные целлюлозы

Заместитель по ОН-группе

Название препарата

O(CH2)2NH2

Аминоэтилцеллюлоза

OPO3H

Фосфорилцеллюлоза

O(CH2)2N(C2H5)2

Диэтиламиноэтилцеллюлоза (ДЭАЭ)

OCH2COOH

Карбоксиметилцеллюлоза (КМЦ)

OCOC6H4NH2

п-Аминобензоилцеллюлоза

OCOCH2Br

Бромацетилцеллюлоза

OCH2CONHNH2

Гидразидкарбоксиметилцеллюлоза

O(CH2)2SO3H

Сульфоэтилцеллюлоза


Вместе с тем сама целлюлоза химически достаточно инертна и не вступает в реакцию с белками, нуклеиновыми кислотами и их компонентами. Этого нельзя сказать о возможности сорбции биологических молекул на целлюлозе [5]. Целлюлоза неустойчива к воздействию сильных кислот, щелочей и окислителей. Рабочий интервал рН составляет 3-10. Целлюлоза охотно атакуется микроорганизмами даже на холоду, поэтому ее водные суспензии хранят в присутствии антисептиков.

Согласно результатов рентгенографических исследований микрофибрилла целлюлозы образована протяженными, высококристаллическими элементарными фибриллами, находящимися в своеобразной матрице из значительно менее упорядоченных макромолекулярных образований. Водородные связи между линейными цепями целлюлозы на отдельных участках могут образовывать псевдокристаллические структуры, которые чередуются с более рыхлыми, аморфными областями – “порами”. Так формируются макроскопические нити целлюлозы, легко набухающие в поперечном направлении. “Кристаллические” участки мало доступны для присоединения модифицирующих заместителей, которые из-за этого располагаются главным образом на поверхности нитей и в порах. В целом получается микрогетерогенная структура, характер которой зависит от исходного материала и технологии обработки целлюлозы.


Случайные файлы

Файл
132277.rtf
74146-1.rtf
46935.rtf
163935.rtf
131913.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.