Химия и технология производства 2–нафтола щелочным плавлением (166076)

Посмотреть архив целиком

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»


Факультет химических технологий


Кафедра ОХ и ХТОВ


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Химия и технология производства 2 – нафтола щелочным плавлением


(ХТОВ. 000000.016ПЗ)



Руководитель:

Б.Б. Кочетков

_______________Е.В. Роот

(подпись)

_______________________

(оценка, дата)

Разработал:

Студент группы 64-7:

Троцюк А.В.

_________________

(подпись)

__________________________

(дата)


ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ


вариант 16

Студенту группы 64-7 Троцюк Анне Васильевне

Тема курсовой работы: Химия и технология производства 2 – нафтола щелочным плавлением.


Задание выдано

________________________________Руководитель Кочетков Б.Б.



Реферат


В данной курсовой работе была произведена оценка и выбрана наиболее выгодная схема получения β - нафтола, подобрано аппаратурное оформление и технологическая схема для его получения.

Курсовая работа содержит 37 страниц, 3 таблицы, 4 рисунка.



Содержание


Введение

1 Назначение и характеристика выпускаемой продукции

2 Технологическая часть

2.1 Кинетика и механизм реакции

2.2 Технология щелочного плавления

2.3 Получение β – нафтола

2.3.1 Щелочное плавление β – соли

2.3.2 Подкисление раствора нафтолята

2.3.3 Очистка 2 – нафтола

3 Контроль процесса щелочного плавления и методы определения гидроксисоединений

4 Аппаратура для обработки продуктов щелочного плавления

5 Безопасность и экологичность работы

Заключение

Список использованных источников

Приложение А

Приложение А.1

Приложение А.2

Приложение Б

Приложение В



Введение


Щелочное плавление - процесс взаимодействия металлических солей сульфокислот со щелочами, приводящих к замещению сульфогруппы гидроксильной группой. Данный метод является одним из основных для получения ароматических гидроксильных соединений, которые очень важны в производстве многих продуктов тонкого органического синтеза. Исходным органическим сырьем в процессах щелочного плавления являются металлические (главным образом натриевые) соли сульфокислот (бензолсульфонат натрия, нафталин сульфонат натрия, натриевые соли нафталинаминосульфокислот, антрахононсульфокислот и т.д.), применяемые в виде растворов, паст и сухих веществ. Неорганическим сырьем, участвующим в этих процессах, являются щелочи (едкий натр, едкое кали, окись кальция и др.), применяемые в виде растворов и расплавов.



1 Назначение и характеристика выпускаемой продукции


2-нафтолы-нафтолы)-бесцветные кристаллы со слабым фенольным запахом; хорошо растворимы в этаноле, диэтиловом эфире, хлороформе, бензоле, плохо - в воде.





β – нафтол применяется при производстве органических красителей, в парфюмерной промышленности, в медицине.

β – нафтол полупродукт органического синтеза, имеет молекулярную массу М=144,17 г/моль;

плотность p=1,217;

температура кипения t кип=2860С;

температура плавления t пл=1220С;

Растворим в воде (0,074) и в органических растворителях: хлороформе, бензоле, этаноле.



2 Технологическая часть


2.1 Кинетика и механизм реакции


Замена сульфогруппы гидроксигруппой в ароматических соединениях методом щелочного плавления является одним из основных методов получения ароматических гидроксисоединений — важного класса органических соединений, используемых в производстве многих продуктов тонкого органического синтеза, в том числе в производстве органических красителей.

Впервые в 1864 г. Дюзаром и почти одновременно и независимо Вюрцем и Кекуле было осуществлено превращение бензолсульфокислоты в фенол. Эта реакция, в которой один заместитель в ароматическом ядре замещается другим, происходит с разрывом связи С—S и образованием новой связи С—О. Реакции замещения сульфогруппы гидроксигруппой протекают в жестких условиях, при высокой температуре (150—340 °С), часто при действии расплавленной щелочи(NaOH или КОН) с небольшим содержанием воды.

В качестве реагентов для превращения сульфогруппы в гидроксигруппу применяют гидроксид натрия NaOH, гидроксид калия КОН и гидроксид кальция Са(ОН)2 (в ряду антрахинона). Наиболее часто используют NaOH, который более дешев, хотя и менее реакционноспособен, чем КОН. В некоторых случаях используют смесь NaOH и КОН, имеющую более низкую температуру плавления, чем каждый реагент в отдельности (т. пл. NaOH 328 °С, т. пл. КОН 360 °С), что позволяет вести процесс при более низких температурах.

Замещение сульфогруппы в ароматических соединениях гидроксигруппой протекает при действии щелочей на соли сульфокислот (уравнение 1).


ArSO3Na + 2NaOH  ArONa + Na2SO3 + H2O (1)


Однако в действительности реакция протекает более сложно, чем показано в уравнении (1). При изучении кинетики реакций щелочного плавления бензолсульфокислоты и некоторых нафталинсульфокислот с водными растворами NaOH было найдено, что для большинства сульфокислот реакции имеют второй порядок, а для бензолсульфокислоты, 6-гидрокси- и 7-гидроксинафталин-2-сульфокислот — порядок близок к трем, т. е. наблюда ется первый порядок по сульфокислоте и второй — по щелочи. Эти данные указывают, что реакция протекает в две стадии (схема 2). На первой стадии


-+он +он

ArSO3 [HOArSO3]2 ArO +SO32+ Н2О (2)


происходит присоединение гидроксид-иона к аниону аренсульфокислоты с образованием дианиона, который далее (вторая стадия) реагирует со вторым гидроксид-ионом, образуя феноксид-ион, сульфит-ион и воду. Эта схема была предложена Н. Н. Ворожцовым ст. еще в 30-е годы XX века.

В соответствии с общими положениями ароматического нуклеофилыюго замещения и данными, полученными при изучении кинетики этой реакции, в настоящее время механизм щелочного плавления может быть представлен уравнением (3). Считают, что при действии второго гидроксид-иона происходит отрыв протона от гидроксильной группы -комплекса. Электронодонорное влияние образующегося заместителя О способствует последующему отщеплению иона SO32

(3)


Применив, принцип стационарности и определив концентрацию продукта присоединения первого гидроксид-иона (-комплекса) (уравнение 4) получим для скорости реакции щелочного плавления уравнение (5).


[HOArSO32] = k1[ArSO3][ОН]/ k 1 + k2 [НО] (4)


v = k1k2 [ArSO3][НО]2/k 1 + k2 [НО] (5)


Если в соответствии с общей схемой щелочного плавления (смотри схему 3) первая стадия (присоединение гидроксид-иона к аниону сульфокислоты) будет медленной стадией, т.е. k1<k2, то скорость реакции щелочного плавления будет определяться уравнением (6), а порядок реакции будет равен 2.


v = k1 [ArSO3] [НО] (6)


Если действие второго гидроксид-иона и отрыв сульфит-аниона будут проходить медленно, т. е. k1>k2, и определять скорость всего процесса, то реакция будет описываться уравнением (7) и иметь порядок, равный 3.


v = Kk2 [ArSO3] [НО]2 (7)


где K = k1/k1.

Понижение электронной плотности в реакционном центре, облегчающее нуклеофильную атаку гидроксид-ионом вызывается в основном только индуктивным эффектом ионизированной сульфогруппы. Поэтому реакция имеет высокую энергию активации (143—197 кДж/моль) и протекает в жестких условиях (300—340 °С). Протекание реакции при высокой температуре объясняется тем, что в ходе реакции происходит взаимодействие двух отрицательных ионов — ArSO3 и НО. Структура промежуточно образующихся -комплексов объясняет стабильность к щелочному плавлению, например, 4-гидроксибензол-1-сульфокислоты (п-фенолсульфокислоты) и невозможность получения из нее гидрохинона. В этом случае во взаимодействие с гидроксид-ионом должен был бы вступать дианион 4-гидроксибензол-1-сульфо-кислоты, в котором у атома углерода, связанного с сульфогруппой, дополнительно повышается электронная плотность из-за мезомерного влияния ионизированной группы ОН.

Таким образом, введение в молекулу ароматической сульфокислоты электронодонорного заместителя затрудняет реакцию щелочного плавления, и, наоборот, электроноакцепторные заместители облегчают реакцию.

Изучение щелочного плавления [14C] бензолсульфокислоты показало, что гидроксильная группа вступает в то же положение, где находилась сульфогруппа. При щелочном плавлении п-толуолсульфокислоты образуется только п-крезол. При действии на соль бензолсульфокислсмы гидроксидов натрия и калия, обогащенных 18О, было обнаружено, что атом кислорода гидроксида переходит в образующиеся феноксид и воду. Все это является подтверждением рассмотренного выше механизма щелочного плавления.

Согласно имеющимся данным, реакция замещения сульфогруппы гидроксигруппой протекает по механизму ароматического нуклеофильного замещения (присоединения — отщепления), а реакция, протекающая по «ариновому» механизму, практически отсутствует.



2.2 Технология щелочного плавления


Щелочное плавление можно осуществлять тремя способами: при атмосферном давлении, так называемая открытая плавка; 2) при повышенном давлении в автоклавах; 3) с использованием гидроксида кальция (извести), так называемый известковый плав.

Для щелочного плавления при атмосферном давлении применяют гидроксид натрия как в твердом состоянии, так и в виде 12%-ного или 70—73%-ного растворов. При использовании растворов NaOH их упаривают до концентрации: 80—85%; при применении твердого NaOH к его расплаву добавляют до 10% воды. Все это позволяет получить плав, подвижный при 270— 290 °С, и создать благоприятные условия для ведения реакции.


Случайные файлы

Файл
8641.rtf
102314.rtf
151438.rtf
147631.rtf
110610.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.