Теория химических процессов органического синтеза (166021)

Посмотреть архив целиком

Федеральное агентство по образованию.


Государственное образовательное учреждение высшего профессионального

образования.


Самарский государственный технический университет.


Кафедра: "Технология органического и нефтехимического синтеза"


Курсовая работа


по курсу:

"Теория химических процессов органического синтеза"















Самара

2006 г.


Задание №1


При взаимодействии мезитилена со спиртом получена реакционная масса следующего состава (% масс.): - мезитилен – 10,39, АО-40 – 62,25, м-ксилол – 2,23, тетраметилбензол – 14,15, исходный спирт – 7,98. Вычислить степень конверсии реагентов, селективность процесса по каждому из продуктов реакции в расчете на каждый реагент и выход на пропущенное сырье каждого из продуктов реакции в расчете на один реагент.


Решение: наиболее вероятная схема превращений:



Составим таблицу распределения мол. долей исх. вещества:

Компонент

% масс.

М

G

Кол-во мол. исх. в-ва

мезитилен

спирт

мезитилен

10,39

120

0,0866

b1 = 0.0866

0

4-гидроси

7,98

235

0,0340

b2 =0

d1 =0,0340

АО-40

62,25

771

0,0807

b3 =0.0807

d2 =0,2422

м-ксилол

2,23

109

0,0205

b4 =0.0205

0

ТМБ

14,15

134

0,1056

b5 =0.1056

0


Степень конверсии мезитилена определяется по формуле:

Степень конверсии спирта:

.

Селективность продуктов в расчете на мезитилен рассчитывается по формуле: , по спирту: . Результаты расчетов приведены в табл. 1.


Таблица 1

Компонент

Селективность

по мезитилену

по спирту

АО-40

0,3904

1

м-ксилол

0,0989


ТМБ

0,5106



Проверка: , .

Выход продуктов на пропущенное сырье в расчете на пропилен рассчитывается по формуле: , в расчете на спирт: . Результаты представлены в табл. 2:


Таблица 2

Продукт/Пропущенное сырье

мезитилен

спирт

АО-40

0,2752

0,8770

м-ксилол

0,0697

0

ТМБ

0,3599

0



Задание № 2


Решение: Схема реакции представлена на рис. 1:


Рис. 1. Дегидрирование н-бутана.


Схема реактора представлена на рис. 2.


Рис. 2. Схема теплового баланса реактора.


Тепло, входящее в реактор, определяется по формуле:

, (1) здесь:

,

,

- определено для Т = 800К из логарифмического полиномиального уравнения, полученного по табличным данным;

определено для Твх из логарифмического полиномиального уравнения для Ср н-пентана с помощью функции "Поиск решения" программы "Microsoft Excel";

- для 1000К определено по табличным данным;

- определено для Твх из полиномиального уравнения для Ср воды с помощью функции "Поиск решения" программы "Microsoft Excel";

, ,

С помощью функции "Поиск решения" программы "Microsoft Excel" методом наименьших квадратов определено значение Твх = 966К.

Энтальпия реакции при данной Твх:

Теплота реакции определяется величиной энтальпии реакции, массового расхода реагента, степенью конверсии реагента.

Рассмотрим, когда степень конверсии .

,

Согласно уравнению теплового баланса:

.

Здесь: ,

- определено для Твых из логарифмического полиномиального уравнения с помощью функции "Поиск решения" программы "Microsoft Excel";

,

- определено для Твых из логарифмического полиномиального уравнения для Ср н-бутана с помощью функции "Поиск решения" программы "Microsoft Excel";

,

- определено для Твых из логарифмического полиномиального уравнения для Ср бутена с помощью функции "Поиск решения" программы "Microsoft Excel";

- определено для Твых из логарифмического полиномиального уравнения с помощью функции "Поиск решения" программы "Microsoft Excel";

,

С помощью функции "Поиск решения" программы "Microsoft Excel" методом наименьших квадратов определено значение Твых = 931К.

Аналогично определяем значения Твых для различных значений степени конверсии. Полученные значения представлены в таблице 3.


Таблица 3

α

Твых

0,1

34

0,2

45

0,4

66

0,6

88


Графическая зависимость перепада температур на входе и выходе от степени конверсии представлена на рисунке 3.


Рис. 3. Зависимость адиабатического перепада температур от степени конверсии.


Выводы


Как видно, характерной особенностью процесса является линейное увеличение адиабатического перепада температур в зоне реактора при увеличении степени конверсии исходного вещества. Это обуславливает некоторые технологические особенности промышленного процесса дегидрирования н-бутана.

Реактор процесса дегидрирования представляет собой колонну, снабженную провальными тарелками. Реакционная смесь подается вниз колонны и пары поднимаются через тарелки, проходя слой катализатора. При этом, как ясно видно из результатов расчетов, реакционная смесь охлаждается, и процесс дегидрирования замедляется. Во избежание подобного вверх колонны подается подогретый катализатор, регенерированный в регенераторе. Более горячий катализатор контактирует с частично прореагировавшей смесью, и наоборот, чем достигается выравнивание скоростей реакции по всему объему. На регенерацию закоксованный катализатор поступает, стекая по десорберу, где его отдувают от углеводородов азотом.

Таким образом, за счет дополнительного подогрева регенерированного катализатора и подачи его вверх колонны реактора достигается выравнивание температуры процесса.


Задание №3


Выполнить полный количественный анализ процесса пиролиза изопентана с образованием метана и изобутилена.

Дать анализ зависимостей равновесной степени конверсии изопентана и состава равновесной смеси от варьируемых параметров.

Аргументировать технологические особенности промышленных процессов пиролиза углеводородов и конструктивные особенности реакторов пиролиза.


Решение:


Проведем предварительный расчет процесса. Для этого необходимо ввести допущение, что побочных реакций не протекает, селективность процесса по целевому продукту 100%, то есть упрощенная схема реакции имеет вид:

Для определения параметров процесса необходимо определить термодинамические данные веществ, участвующих в реакции:


Для изопентана:

Т, К

Н, кДж/моль

S ,Дж/моль*К

298

-154,47

343,59

300

-154,68

344,34

400

-163,64

383,34

500

-171,00

420,74

600

-176,86

456,39

700

-181,33

490,28

800

-184,64

522,37

900

-186,82

552,79

1000

-188,03

581,62


Для изобутилена:

Т, К

Н, кДж/моль

S ,Дж/моль*К

298

-16,90

293,59

300

-17,03

294,18

400

-22,72

322,92

500

-27,61

349,87

600

-31,71

375,26

700

-35,02

399,15

800

-37,66

421,66

900

-39,62

442,96

1000

-40,96

463,13


Случайные файлы

Файл
136697.rtf
151920.rtf
33029.rtf
95999.rtf
diplom.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.