Абсорбция сероводорода (165584)

Посмотреть архив целиком

Содержание


Введение

1. Общая часть

2. Технологический расчет

2.1 Материальный баланс, определение массы улавливаемого сероводорода и расхода поглотителя

2.2 Расчёт движущей силы

3. Конструктивный расчет

3.1 Расчет коэффициента массопередачи

3.2 Выбор типа насадки и рекомендации по её применению

3.3 Расчет скорости газа и диаметра абсорбера

3.4 Определение скорости жидкости (плотности орошения) и доли активной поверхности насадки

3.5 Расчет коэффициентов массотдачи

3.6 Определение поверхности массопередачи и высоты абсорбера

4. Расчет гидравлического сопротивления абсорбера

5. Прочностной расчет

5.1. Расчет толщины стенки обечайки

5.2 Расчет днищ и крышек

5.3. Расчет опор аппарата

5.4. Расчет штуцеров

5.5. Конструкции фланцевых соединений

Список литературы



Введение


В данном курсовом проекте происходит абсорбция сероводорода, из воздушной смеси, водой. В результате, на выходе из абсорбера, получается так называемая сероводородная кислота, широко используемая как в промышленности, так и в народном хозяйстве.

СЕРОВОДОРОД -- Н2S, бесцветный газ с резким удушливым запахом; tпл = -77,7 °С, tкип = -33,35 °С. Растворим в воде (0,378% по массе при 200С); водный раствор - сероводородная кислота.

КПВ в воздухе 4,5-45,5%.

Сероводород является сильным окислителем. Содержится в попутных газах месторождений нефти, в природных и вулканических газах, водах минеральных источников. Образуется в результате разложения белковых соединений. В промышленности получается как побочный продукт при очистке нефти, природного и коксового газа. В лабораторных условиях получается при взаимодействии сульфида железа и серной кислоты.

Применяется в производстве серной кислоты, серы; для получения сульфидов, сероорганических соединений; для приготовления лечебных сероводородных ванн.

Раздражает слизистые оболочки и дыхательные органы (ПДК 10мг/м3)


1. Общая часть


Под абсорбцией понимают поглощение газа или жидкости жидким поглотителем, в котором абсорбируемое вещество более или менее растворимо. Области применения абсорбционных процессов в промышленности весьма обширны: получение готового продукта путём поглощения газа жидкостью; разделение газовых смесей на составляющие их компоненты; очистка газов от вредных примесей; улавливание ценных компонентов из газовых выбросов.

Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа в жидкости не сопровождается химической реакцией или влиянием этой реакции на скорость процесса можно пренебречь. Как правило, физическая абсорбция не сопровождается существенными тепловыми эффектами. Если при этом начальные потоки газа и жидкости незначительно различаются по температуре, такую абсорбцию можно рассматривать как изотермическую.

При выборе типа абсорбера необходимо в каждом конкретном случае исходить из физико-химических условий проведения процесса с учетом технико-экономических факторов.

Поверхностные абсорберы используются для поглощения хорошо растворимых газов, они имеют ограниченное применение вследствие малой эффективности и громоздкости. К достоинствам более эффективных, относятся простота устройства, низкое гидравлическое сопротивление, возможность работы с загрязненными газами. Однако и они применяются, главным образом, для поглощения хорошо растворимых газов.


2. Технологический расчет


Геометрические размеры колонного массообменного аппарата определяются в основном поверхностью массопередачи, необходимой для проведения данного процесса, и скоростями фаз.

Поверхность массопередачи может быть найдена из основного уравнения массопередачи [1]:



где - масса вещества, передаваемого через поверхность раздела фаз в единицу времени (масса улавливаемого компонента), ;

- коэффициенты массопередачи соответственно по жидкой и газовой фазам, ;

- средняя движущая сила абсорбции по жидкой фазе, ;

- средняя движущая сила абсорбции по газовой фазе, .


2.1 Материальный баланс, определение массы улавливаемого сероводорода и расхода поглотителя


Массу сероводорода, переходящего в процессе абсорбции из газовой смеси в поглотитель за единицу времени, находят из уравнения материального баланса:



где - масса улавливаемого компонента, ;

- расходы соответственно чистого поглотителя и инертной части газа, ;

- начальная и конечная концентрация сероводорода в газе, ;

- начальная и конечная концентрация сероводорода в поглотителе, .

Проведем пересчет концентраций и нагрузок по фазам в выбранную для расчета размерность:


,


где - мольная доля сероводорода в газе на входе в абсорбер, ; - мольная масса сероводорода, ; [2]; - мольная масса воздуха, ; [2].

Поскольку мольная доля любого компонента смеси идеальных газов равна его объемной доли, определим мольную долю сероводорода на входе в абсорбер:


.


Тогда



Конечная концентрация сероводорода в газе рассчитывается из регламентированной степени улавливания по формуле:



Конечная концентрация абсорбируемого компонента в абсорбенте обуславливает расход поглотителя, который в свою очередь влияет на размеры абсорбера и часть энергетических затрат, связанных с перекачиванием жидкости и ее регенерацией. Конечную концентрацию можно определить из уравнения материального баланса, выбрав оптимальный коэффициент избытка поглотителя.

Из уравнения материального баланса следует:


,


где - минимальный массовый расход чистого поглотителя, ; - конечная относительная массовая концентрация сероводорода в поглотителе, равновесная относительной массовой концентрации сероводорода в газе , ; - коэффициент избытка поглотителя. На основании технико-экономических расчетов коэффициент избытка поглотителя принимают равным 1,1 [1]. Отсюда



С учетом заданной степени регенерации абсорбера , определим концентрацию сероводорода в регенерированном поглотителе:



Проверим, не противоречат ли определённые выше параметры необходимому условию проведения процесса абсорбции наличию движущей силы процесса в любой точке по высоте аппарата, а именно:



Массовый расход инертной части газа может быть определён из выражения



где -- массовый расход инертной части газа, ; -- объёмный расход газа при нормальных условиях, ; -- средняя плотность инертной части газа при нормальных условиях, ; где -- средняя плотность газа при нормальных условиях, ; -- объёмная массовая концентрация сероводорода в газе на входе в абсорбер, . Среднюю плотность газа также можно рассчитать, зная его среднюю молекулярную массу из уравнения Менделеева-Клапейрона. Для аммиачного газа при нормальных условиях получим:



где -- нормальное давление,

; ; -- газовая постоянная,

; ;

-- абсолютная температура при нормальных условиях, ; .



Объёмная массовая концентрация сероводорода в газе на входе в абсорбер определяется по формуле для пересчета концентраций


;


Тогда


,


Производительность абсорбера по поглощаемому компоненту



Определим материальные потоки процесса.

Расход поглотителя (воды) равен



Тогда отношение расходов фаз или удельный расход поглотителя определяется



Расходы поглощающей смеси на входе и выходе абсорбера, соответственно и , определяются выражениями:



Расходы газовой смеси на выходе и входе абсорбера, соответственно и , будут:



2.2 Расчёт движущей силы


В насадочном абсорбере жидкая и газовая фазы движутся противотоком, при этом контакт фаз близок к непрерывному. Учитывая, что данный процесс абсорбции - изотермический (линия равновесия является прямой линией), расходы фаз постоянны (G=const и L=const), т.е. и рабочая линия является прямой.

Предполагая, что потоки фаз равномерно распределены по поперечному сечению аппарата, перемешивание отсутствует, и все частицы каждой фазы движутся с одинаковыми скоростями, при этом концентрации фаз постоянны по поперечному сечению аппарата и изменяются только по его высоте, т.е. принимая модель идеального вытеснения, средняя движущая сила определяется по формуле



где: -- большая и меньшая движущие силы на входе потоков в абсорбер и на выходе из него,



где: -- относительные массовые концентрации сероводорода в газе, равновесные с концентрациями в жидкой фазе (поглотителе), соответственно, на входе в абсорбер и на выходе из него, .

Определим большую и меньшую движущие силы на входе потоков в абсорбер и выходе из него:



Определим среднюю движущую силу



3. Конструктивный расчет


3.1 Расчет коэффициента массопередачи


Коэффициент массопередачи находят по уравнению аддитивности фазовых диффузионных сопротивлений [1]:



где -- коэффициент массопередачи, ;

-- коэффициент распределения, ;

-- коэффициенты массоотдачи соответственно в жидкой и газовой фазах, .

Для расчета коэффициентов массоотдачи необходимо выбрать тип насадки и рассчитать скорости потоков в абсорбере.


Случайные файлы

Файл
30452-1.rtf
46994.rtf
151582.rtf
60864.rtf
30187-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.