Проектирование силовых блоков полупроводникового преобразователя (151807)

Посмотреть архив целиком

Министерство образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Сибирский Государственный Индустриальный Университет

Кафедра автоматизированного электропривода и промышленной электроники









Курсовая работа

по преобразовательной технике

Проектирование силовых блоков полупроводникового преобразователя




Выполнил: студент гр. АЭП-022

Д.С. Мысков

Проверил: преподаватель

В.Т. Хромогин




Новокузнецк 2004



Введение


Преобразовательная техника является одним из наиболее эффективных направлений электротехники. Преобразовательные устройства служат для преобразования переменного напряжения (тока) в постоянное, постоянного напряжения (тока) в переменное, переменного напряжения одной частоты в переменное напряжение другой частоты и т.д.

В преобразовательных устройствах используются средства, осуществляющие фильтрацию и стабилизацию тока и напряжения. Основными характеристиками преобразовательных устройств являются коэффициент полезного действия, коэффициент мощности и другие энергетические характеристики.

Преимущества полупроводниковых преобразователей оп сравнению с другими преобразователями неоспоримы: они обладают высокими регулировочными характеристиками и энергетическими показателями, имеют малые габариты и массу, просты и надёжны в эксплуатации. Кроме преобразования и регулирования тока и напряжения такие установки обеспечивают бесконтактную коммутацию токов в силовых цепях.

Благодаря указанным преимуществам полупроводниковые преобразовательные устройства получают широкое применение в различных отраслях народного хозяйства.



Задание


Таблица 1. Исходные данные для проектирования преобразователя

U,КВ

Uс,%

Uн,В

Iн,A

Kп

t ,c

Kп

t ,mc

q,%

Хар.нагр.

Реж. раб.










я. двиг.

выпр.,инв.

6

15

260

320

1,1

4

1,3

30

7

+

+



Система защиты вентилей

Способ воздушн.

c, C

токовая

перенапряжен.

охлаждения


вну.кз

кз=I

ком.vs,vd

ком.нгр.

естественный

15


1) U- напряжение питающей сети.

  1. Uc- колебания напряжения питающей сети.

  1. Uн - номинальное значение выпрямленного напряжения на нагрузке.

  2. Iн - номинальное значение выпрямленного тока в нагрузке.

  3. Kп - кратность кратковременной технологической перегрузки.

  4. t - длительность кратковременной технологической перегрузки.

  5. Kп - кратность длительной технологической перегрузки.

  6. t - продолжительность действия длительной технологической перегрузки.

  7. q - коэффициент пульсации выпрямленного напряжения на нагрузке.

  8. Характер нагрузки: Я - якорь двигателя.

11) Режим работы:

В- выпрямительный , И- инверторный.

12) Способ управления преобразователем: Управляемый.

  1. Система защиты:

вну. кз - внутренние короткие замыкания.

кз = I - короткие замыкания на стороне постоянного тока.

кз ~ I - короткие замыкания на стороне переменного тока.

ком.vs,vd - коммутационные перенапряжения в вентилях.

ком.нгр.- коммутационные перенапряжения со стороны нагрузки.

  1. с - температура окружающей среды.

  1.  - коэффициент полезного действия установки.

  2.  - коэффициент мощности установки.



1. Разработка принципиальной схемы


1.1 Выбор и обоснование схемы соединения вентилей


Разрабатываемый мной преобразователь, является преобразователем средней мощности: Pн = Iн Uн =83,2 кВт, следовательно целесообразно взять трёхфазную схему.

Источником питания выбираем сеть трёхфазного переменного тока.

Из трёхфазных схем выпрямления отдаю предпочтение трёхфазному мостовому выпрямителю, т.к. он обеспечивает коэффициент пульсации q=5,7% от Uн, при требуемом q=7%, т.е. отпадает необходимость применения сглаживающего фильтра. В виду расхождения напряжения питающей сети Uc=6 кВ и Uн=260В возникает необходимость включения в схему понижающего трансформатора. Обмотки трансформатора соединены звездой. При соединении вентилей в трёхфазную мостовую схему постоянные составляющие токов вторичной обмотки не создают ПВН.

Для защиты вентилей от внутренних КЗ применяются специальные быстродействующие плавкие предохранители; предохранители устанавливаются последовательно в цепи каждого тиристора; от КЗ на постоянном токе – автоматический выключатель.

Коммутационные перенапряжения в вентилях устраняются выключением R-C цепей параллельно каждому тиристору; перенапряжения в нагрузке – включением нулевого диода.



2. Расчёт параметров и выбор элементов схем


2.1 Основные соотношения, характеризующие трёхфазную мостовую схему трансформатора


Iа = 1/3  Iн=1/3  320 = 106,7 А (2.1.1), [1, c.217]

U2= Uо*0,427=260*0,427=111,02В (2.1.2), [1, c.217]

I2= 0,817 Iн = 0,817  320 = 261,44А (2.1.3), [1, c.217]


Мощность, передаваемая в нагрузку:


Рн = Uн  Iн = 260 320 = 83,2 кВт (2.1.4), [1, с.217]


Типовая мощность трансформатора:


Sт = 1,05Рн = 1,05 83200 = 87,36 кВ  А (2.1.5), [1, c.217]


Iа- средний ток протекающий через вентиль;

U2- действующее значение напряжения вторичной обмотки трансформатора;

I2 - действующее значение тока вторичной обмотки трансформатора;


2.2 Расчёт электрических параметров трансформатора


С учётом типовой мощности трансформатора и напряжения питающей сети выбираю трансформатор ТМ-100/10 [ 2, табл .29-1, c.246]



Таблица 2. Технические данные трансформатора

Параметр

Значение

Мощность

100 кВА

Напряжение силовой обмотки

6 кВ

Напряжение вторичной обмотки

230 В

Потери холостого хода

0,365 кВт

Потери короткого замыкания

2,27 кВт

Напряжение короткого замыкания

4,7 %

Ток холостого хода

2,6 %


Для отключения преобразователя от сети необходим выключатель на ток

.

C учетом возможных перегрузок в качестве QS1 из [ 5, c.589] выбираем выключатель ВНП-16 на напряжение 6 кВ и ток 30 А.


2.2.1 Расчёт сопротивлений трансформатора

X2k, R2k-приведённые к вторичной стороне реактивное и активное сопротивление одной фазы трансформатора и питающей сети переменного тока, т.е. X2k=Х2к,т + Х2к,с и R2k=R2k,т + R2k,с . Так как мощность моего преобразователя Sт = 87,36 кВт < 500 кВт , то сопротивлением питающей сети можно пренебречь : X2k=Х2к,т , R2k=Rk, 2т . [3,c.105] .

Активное сопротивление трансформатора приведённые к вторичной обмотке:


R2k,т = Ом (2.2.1.1) , [3,c.105]


Pk = 2,27 кВт - потери короткого замыкания (см . табл.2).

I2ф = 261,44 А - фазный ток вторичной обмотки трансформатора (см. 2.1.3).

Полное сопротивление трансформатора , приведённое ко вторичной обмотке:


Zk, 2т = = = 0,0248 Ом (2.2.1.2), [3,c.105]


Uk , % = 4,7 % - напряжение короткого замыкания.

U2л =230 В - фазный напряжение вторичной обмотки трансформатора.

Sн = 100 кВА - номинальная мощность трансформатора.

Индуктивное сопротивление трансформатора, приведённое к вторичной обмотке:


Х2к,т = = = 0,022 Ом (2.2.1.3), [3,c. 105]


Индуктивность трансформатора, приведённая ко вторичной обмотке:


L2k,т= = 0,07 мГн (2.2.1.4), [3,c.105].


2.3 Расчёт электрических параметров вентилей


2.3.1 Расчёт ударного тока и интеграла предельной нагрузки внешнего, короткого замыкания

Амплитуда базового тока короткого замыкания:


Ik, m = = =7572,35 А (2.3.1.1), [3,c.105].


U2ф = 132,8 В - фазный напряжение вторичной обмотки трансформатора .

R2k,т = 0,012 Ом - активное сопротивление трансформатора приведённые к вторичной обмотке (см. 2.2.1.1).

Х2к,т = 0,022 Ом - индуктивное сопротивление трансформатора , приведённое ко вторичной обмотке (см . 2.2.1.3).

Ударный ток предельной нагрузки внешнего, короткого замыкания:


Iуд = Ik, m  i уд =7572,35 0,86 = 6512,2А (2.3.1.2), [3,c.105] .


i уд =0,86- ударный ток в относительных единицах, берётся с кривой [3, с.105, рис.1- 127 а], при ctg k = = 0,545


Случайные файлы

Файл
30313-1.rtf
32174.rtf
506.doc
83910.rtf
7975-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.