Приёмники электрической энергии промышленных предприятий (151527)

Посмотреть архив целиком

ВВЕДЕНИЕ


Одним из энергоемких металлургических производств является электрометаллургия. Основными направлениями интенсификации в электрометаллургии являются создание высокоэффективных процессов, повышение качества продукции, улучшение использования оборудования, площадей, сырья, материалов, топлива и энергии, комплексная механизация и автоматизация. Каждому уровню техники соответствует наиболее рациональное сочетание этих факторов, достижение которого является задачей оптимизации производства. Поиск оптимальных условий ведения электрометаллургических процессов будет успешным в том случае, если в основе его лежит правильный выбор цепи оптимизации и отражающего ее критерия, а также минимальное количество влияющих факторов и применение математических методов. Найденные оптимальные условия диктуют требования к построению той или иной системы автоматического управления и контроля. Таким, образом, при оптимизации возникает комплекс проблем, требующих участия широкого круга специалистов по технологии, энергетике, автоматике, вычислительной технике и математике.

Развитие этих проблем в известной мере условно можно разделить на два основных направления: технологическое и электроэнергетическое. Изменение технологических факторов (состава и температуры электролита, конструкции и др.) само по себе может быть достаточно эффективным, но техническая реализация их в ряде случаев затруднена по соображениям экономичности, окружающей среды и т.д. Так, получение высококачественных кристаллических осадков требуется применение специальных добавок, содержащих зачастую ядовитые или агрессивные компоненты. Присутствие в электролитах даже незначительного количества примесей может существенно влиять на протекание процесса, поэтому требуются дополнительные устройства, например, для фильтрования, очистки раствора, что значительно усложняет и удорожает технологию.

Увеличению производительности, снижению себестоимости продукции, улучшению условий труда персонала способствуют мероприятия направленные на совершенствование электрооборудования, автоматизация, применение нестационарных электрических режимов электролиза позволяет вести процесс с электролитом простого состава, менее чувствительного к примесям, не требует реконструкции ванн.

Независимое развитие каждого из этих направлений не обеспечивает оптимальных показателей работы электрометаллургических установок. Специалисты - технологи электроэнергетики выполняют круг задач, сводящихся в основном к повышению вводимой мощности и контролю технологических параметров. При этом не всегда интересуются качественной стороной влияния электрических режимов на ход технологических процессов и свойства получаемого металла. Между тем возможности энергетики и автоматики используются не полностью часто вследствие того, что специалисты - электрики недостаточно знают технологию. Рациональное сочетание этих условий направлено на повышение производительности промышленных установок, улучшение качества продукции и получение высоких экономических показателей и составляют основную задачу оптимизации работы мощных электролизных установок.

Алюминий применяется в первую очередь в авиационной промышленности, где требуется особая легкость металла, из которого изготовляются моторы и различные детали летательных аппаратов. Очень важной областью применения является машиностроение, в частности транспортное. Здесь он идет на изготовление цистерн и различных деталей для автомобилей, локомотивов, вагонов и т.д. Чрезвычайно ценным алюминий является в электротехнической промышленности, где он идет на изготовления кабелей, шин, различных проводов, на изготовление деталей для электрических машин, конденсаторов и пр.

Алюминий является очень хорошим материалом для изготовления различных аппаратов, применяемых в химической промышленности, так как он сравнительно хорошо противостоит различным кислотам. Чистый алюминий является хорошим материалом для изготовления алюминиевой краски, которая очень хорошо предохраняет железные изделия от коррозии.

Алюминий применяется как раскислитель в сталелитейном деле; с его помощью можно легко восстановить ряд материалов из оксидов. Очень распространена так называемая алюмотермия. Алюмотермия применяется при сварке рельсов и других железных, стальных изделий.

Алюминий имеет широкое применение в быту (мебель, посуда, художественные изделия и др.) и для всякого рода декоративных целей. В пищевой промышленности алюминий применяется для изготовления фольги, баков, бидонов и мн. др.

Алюминий применяют не только в чистом виде, но и в виде сплавов. Среди сплавов наиболее известны: дюралюминий, который обладает легкостью и высокой прочностью, приближающийся к некоторым сортам стали; силумин - сплав алюминия с кремнием - являющихся хорошим литейным материалом и применяется для весьма сложных отливок; алюминиевая бронза и т.д. Алюминий и его сплавы применяются в военном деле, в частности при изготовлении деталей для военных судов, подводных лодок, танков, а также для изготовления зажигательных снарядов (применяется в виде порошка). Алюминий распространен в природе в виде соединений, но получить его в чистом виде не так легко. В истории производства можно различить три основных этапа:

  1. химический способ - действия натрия на соли алюминия;

  2. электротермический способ - восстановление алюминиевой руды при помощи угля;

  3. электрохимический способ - электролиз расплавленных солей.

Электроснабжение – это обеспечение потребителей электрической энергией. Эта отрасль играет огромное значение в современной промышленности, так как электроэнергия является основным видом энергии, которая используется сегодня во всех отраслях народного хозяйства. Столь широкое внедрение электрической энергии обусловлено ее замечательными свойствами, из которых наиболее важными являются:

  • возможность передачи на значительные расстояния от мест производства к местам потребления при сравнительно малых потерях;

  • простота преобразования в другие виды энергии: тепловую, механическую, световую и так далее;

  • хорошая управляемость;

Сегодня трудно представить нашу жизнь без электричества. Оно окружает нас везде. С помощью электрической энергии приводятся в движение троллейбусы и трамваи, электрички и локомотивы поездов. Дома у каждого из нас много различных бытовых приборов, работающих на электрической энергии. Современное производство также невозможно без применения электроэнергии, это и просто освещение и электропривод станков, и обеспечение технологических процессов.

Электрическая энергия вырабатывается на электростанциях и передается на огромное расстояние к потребителям. При этом необходимо обеспечить надежность электроснабжения потребителей, уменьшить потери при передаче до минимума, экономить энергетические ресурсы. Все это является основными задачами ЭСН (энергоснабжения).

Наиболее перспективным и актуальным на сегодня является направление по созданию энергосберегающих технологий. Это связано с большими затратами на производство электрической энергии и экологические проблемы с этим связанные. Экономия энергетических ресурсов производится в следующих направлениях:

  • ведение энергосберегающей технологии производства;

  • совершенствование энергетического оборудования;

  • сокращение всех видов энергетических потерь, например при передаче электроэнергии;

  • реконструкция устаревшего оборудования;

  • повышение уровня использования вторичных ресурсов;

  • улучшение структуры производства.

Приёмники электрической энергии промышленных предприятий получают питание от системы электроснабжения, которая является составной частью энергетической системы.

На ГПП (главной понизительной подстанции) напряжение снижается с помощью трансформаторов до уровня10(6)кв. Внутризаводские сети состоят из кабельных линий и промежуточных понизительных или распределительных подстанций;

ЦТП (цеховая трансформаторная подстанция) может запитываться непосредственно со сборных шин ГПП, от промежуточных подстанций или распределительных устройств 10(6)кв, общепромышленных потребителей (насосные, компрессорные ).

На ЦТП напряжение снижается до уровня сетей общего пользования 0,4 или 0,69кв. (соответственно у потребителя 0,38 или 0,66кв).

В системе электроснабжения предприятий условно выделяется 3 уровня: внешнее электроснабжение, внутризаводское и внутрицеховое. На каждом уровне можно определить источники и потребители электрической энергии.



1. Описание технологического процесса


Процесс электролиза расплавленных солей заключается в выполнении следующих основных технологических операций:

1. Питание электролизеров глиноземом: в нормальном работающем электролизере расплав на границе с воздухом закрыт слоем застывшего электролита - электролитовой коркой. Наибольшую толщину корка имеет возле стенок шахты; чем ближе к аноду, тем корка меньше. Поверх корки находится глинозем, который до загрузки в шахту прогревается на корке и просушивается. Глинозем на корке служит дополнительным теплоизолирующим элементом электролизера. Для питания электролизера глиноземом пробивают электролитную корку, чтобы погрузить в электролит, находящийся на ней, глинозем. На вновь образующуюся корку вновь загружают глинозем. Весь комплекс операций питания глиноземом называется обработкой электролизера. Обеднение электролита глиноземом ведет к появлению анодного эффекта - «вспышки». Пробивку электролитной корки осуществляют специальными машинами для пробивки корки электролита (МПК). Загрузка глинозема в электролизер с боковым токоподводом, производится с помощью глиноземных бункеров.

2. Замена анода: угольная масса анода электролизера окисляется кислородом, выдающимся на нем и анод постепенно срабатывается, в результате чего анод приходится опускать, чтобы выдержать межполисное расстояние.

3. Выливка металла: алюминий накапливается в процессе электролиза на падине ванны, его выбирают ежесуточно при помощи вакуум - ковша. В начале выливки холодный вакуум - ковш и заборная труба должны быть просушены и прогреты до 150 - 200 оС.

4. Поддержание необходимого состава и уровня электролита: в процессе электролиза электролит не только обедняется глиноземом, но и убывает сам и изменяется его состав, т.е. изменяется соотношение между составляющими электролита NaF и AlF3. Основные причины потери электролита: испарение фтористых солей, пропитывание ими футеровки, разложение электролита примесями, попадающими в расплав с сырьем, механические потери. При установившемся режиме из электролита теряется главным образом фтористый алюминий - испаряется, разлагается влагой, оксидами, сульфатами, попадающими в расплав вместе с сырьем. Поэтому в процессе нормальной работы уровень электролита поддерживают, добавляя криолит, обогащенный фтористым алюминием. Если этого недостаточно, то для поддержания нужного криолитового отношения корректировку состава электролита ведут фтористым алюминием.



2. Категории надежности ЭП по ПУЭ


Перерыв электропитания вызывает убытки производства или так называемый ущерб. Перерыв в питании может быть вызван авариями или повреждениями в энергосистеме или СЭС (системы электроснабжения) предприятия. Он может сопровождаться полным прекращением или частичным ограничением питания потребителей разной продолжительности в после аварийный период. Перерыв (частичный или полный) может быть также следствием дефицита мощности в питающей системе, какое-то время суток и различной продолжительности. В большинстве случаев этот перерыв может быть запланирован и заранее учтён в программе производства. Никакие мероприятия в СЭС при этом нетребуются кроме графиков отключения неответственных потребителей. Ущерб от перерыва питания является наиболее эффективным критерием при определении требуемой степени надёжности электроснабжения.

Категории электроприемников (ЭП) по надежности электроснабжения определяются в процессе проектирования системы электроснабжения на основании нормативной документации, а также технологической части проекта.

Требования технологии оказывают решающее значение при определении степени надёжности питания и построения схем электроснабжения. Недоучёт этих требований может привести как к недостаточному резервированию, так и к лишним затратам.

В отношении обеспечения надежности электроснабжения электро-приемники разделяются на следующие три категории:

Электроприемники первой категории – электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.

Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемникитретей категории- все остальные электро-приемники, не подпадающие под определения первой и второй категорий.

Электроприемники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы злектроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников первой категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление нормального режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимнорезервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

Электроприемники второй категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников второй категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.



3. Расчет нагрузок на ПС 16


Подстанция ПС 16 питает электрооборудование второй серии электролизеров БТ-75. От этой подстанции получают питание: индивидуальные привода электролизеров, краны, освещение и вентиляция участка.

Расчет нагрузок на ПС 16 необходим для: расчетов токов КЗ, трансформаторов 10/0,4кВ, питающих кабелей, аппаратов защиты.

Расчет нагрузок щита кранов, щита освещения производим для выбора, трансформаторов 0,38/0,23кВ, питающих кабелей от ПС 16 до этих щитов и аппаратов защиты.


3.1 ЩИТ КРАНОВ 220В


В данном щите имеется 2 секции шин, от которых запитаны электромостовые краны и индивидуальные привода электролизеров.

Номинальная мощность одного электромостового крана[15]: Рном=52кВт, на каждую секцию приходится по 2 крана, значит ∑Рном.кранов=52 · 4=208кВт

В конструкции электролизера имеется три асинхронных двигателя, а именно:

- двигатель лицевой шторы;

- двигатель задней шторы;

- двигатель подъема и опускания анодного массива.

Как правило двигатели лицевой и задней штор имеют одинаковую мощность по 2,2кВт, а двигатель для подъема и опускания анодного массива – 4кВт.

В цехе имеется 128 электролизеров, для расчета Рном индивидуальных приводов, необходимо знать максимальное количество одновременно включенных приводов, в нашем случае эта цифра 16. Итак общая мощность привода одного электролизера равна Рном.1эл-ра=2,2 + 2,2 + 4 =8,4кВт.

Рном.инд.прив. = 8,4 · 16 = 134,4кВт. [15]

Находим среднесменную нагрузку Рсм по формуле[2]:


Рсм = Рном.инд.прив. ∙ Кинд.прив. + Рном.кран. ∙ Ки.кран.:


Где:

Рном.инд.прив. – номинальная мощность инд.прив(кВт) [15].

Рном.кран. – номинальная мощность крана(кВт) [15].

КИ – коэффициент использования [16].

Рсм=134,4 · 0,5 + 208 · 0,4 = 150,4кВт.

Находим средневзвешенный коэффициент использования Ки.ср.вз [2]:


;

.


Находим средневзвешенный коэффициент мощности cosср.вз.[2]:


;

= 0,56


отсюда tqСР.ВЗ = 1,47

Находим среднесменную реактивную мощность по формуле [2]:


;

QСМ =(83,2 · 1,73 + 67,2 · 1,16) = 221,8кВар


Находим полную максимальную мощность Sмакс [2]



Находим максимальный ток Iмакс [2]



3.2 ЩИТ ОСВЕЩЕНИЯ 220В


В данном щите имеется 2 секции шин, от которых запитаны: рабочее, аварийное освещение цеха, а также освещение самой подстанции.

Находим среднесменную мощность Рсм по формуле[2]:


Рсм = Рраб.осв. ∙ Ки.осв. + Равар.осв. ∙ Ки.авар.осв. +Росв.пс.∙ Ки.осв.пс.


Где:

Рраб.осв. – номинальная мощность ламп рабочего освещения [15]

Равар.осв. – номинальная мощность ламп аварийного освещения [15]

Росв.пс. – номинальная мощность ламп освещения подстанции [15]

Ки – коэффициент использования [16]

Рсм=50 · 0,9 + 24 · 0,5 + 1 · 1 = 58кВт.

Находим средневзвешенный коэффициент использования Ки.ср.вз [2]:


;

.


Находим средневзвешенный коэффициент мощности cosср.вз[2]:


;

= 0,93


отсюда tqСР.ВЗ = 0,37

Находим среднесменную реактивную мощность по формуле [2]:


;

QСМ =(45 · 0,48 + 12 · 0 + 1 · 0) = 21,6кВар


Находим полную максимальную мощность Sмакс [2]




Находим максимальный ток Iмакс [2]




3.3 РАСЧЕТ НАГРУЗОК НА СЕКЦИЯХ 1 И 2 ПС 16


В данной подстанции имеется 2 секции шин, от которых запитаны: вытяжная и приточная вентиляция, щит кранов, щит освещения.

Находим среднесменную нагрузку Рсм по формуле [2]:


Рсм = Рприточ.вент. ∙ Ки. + Рвытяж.вент. ∙ Ки. +Рщ.кран.∙ Ки. + +Рщ.осв.∙ Ки.


Где:

Рприточ.вент. – ном. мощность двигателя приточной вентиляции [15]

Рвытяж.вент. – ном. мощность двигателя вытяжной вентиляции [15]

Ки – коэффициент использования [16]

Рсм=800 · 1 + 800 · 1 + 75 · 0,8 + 342,4 · 0,43 = 1808,4кВт.


Находим средневзвешенный коэффициент использования Ки.ср.вз. [2]:


;

.


Находим средневзвешенный коэффициент мощности cosср.вз.[2]:


;

= 0,82


отсюда tqСР.ВЗ = 0,68

Находим среднесменную реактивную мощность по формуле [2]:


;

QСМ =(1600 · 0,62 + 58 · 0,37 + 150,4 · 1,47) = 1235,4кВар


Находим полную максимальную мощность Sмакс [2]




Находим максимальный ток Iмакс [2]




4. Выбор силовых трансформаторов


В соответствии с требованиями по обеспечению надежности ЭСН ЭП I категории должно быть два иcточника питания, для II категории рекомендуется два, но разрешается один. ЭП III категории могут получать питание от одного источника питания. ЦТП для ЭП I и II категорий выполняются двух трансформаторными, одно трансформаторные ЦТП устанавливаются для потребителей III категории и для небольшой мощности II категории. Для сокращения номенклатуры складского резерва, мощность трансформаторов следует выбирать из стандартного ряда мощностей, так чтобы на одном предприятии было не более одной-двух мощностей.

Стандартный ряд мощностей, в кВА: 63; 100; 160; 250; 400; 630; 1000; 1600; 2500.

ЦТП размещают внутри цехов равномерно, с максимальным приближением к потребителю (не более 200м). ЦТП по конструктивному исполнению делятся на: встроенные; пристроенные; внутрицеховые и отдельно стоящие.

Конструктивное исполнение выбирается с учетом условий окружающей среды, распределения нагрузок, удобство обслуживания.

Резервирование потребителей обеспечивается не только перегрузочной способностью трансформатора при наличие двух источников питания, но и схемами внутризаводских сетей, то есть за счет особенностей присоединения ЦТП к сборным шиам ГПП.

Для использования резервирования по сетям 10 кВ со стороны 10 кВ ЦТП устанавливается РУ (распределительное устройство) с ячейками КСО с высоковольтными выключателями или выключателями нагрузки (с предохранителями или без них). Выбор мощности трансформаторов осуществляется по расчетной среднесменной мощности нагрузки Pсм; Qсм, так как для трансформаторов общего назначения масляных и сухих по ПУЭ допустимы длительные систематические перегрузки в нормальном режиме и длительные перегрузки в послеаварийном режиме. Полная расчетная среднесменная мощность рассчитывается по формуле[2]:



Виды перегрузок

1 Суточные перегрузки.

2 Недогрузочная летом; перегрузочная зимой (на 1 мин. недогрузки летом – 1 мин. перегрузки зимой, но не больше 15%).

3 Аварийная перегрузка – разрешается до 100% на 1 мин.

4. Послеаварийная перегрузка: для масляных трансформаторов в послеаварийном режиме допускается перегрузка на 4% в течение 6 часов 5 суток подряд.

Требуемая мощность трансформатора определяется из выражения:


[2]


где Sсм – средняя нагрузка цеха за наиболее загруженную смену, кВА;

N – число трансформаторов;

Kзагр – коэффициент загрузки.

В среднем для двух трансформаторной подстанции для расчетов Кзагр=0,7. Это удовлетворяет условиям ПУЭ по перегрузки для масляных трансформаторов.


[2]


Для I категории Кзагр≤0,7; Для II категории Кзагр≤0,85 [2].

Мощность трансформатора выбирается ближайшая большая или принимается равной 2 (4; 6) и так далее, так чтобы равномерно распределить подстанции по цеху и рассматривают вопрос разукрупнения трансформаторов по цеху. Для цехов с расчетной нагрузкой до 400 кВА как правило отдельные ПС не предусматривают. При небольшой нагрузке такие цеха объединяют по территориальному признаку и запитывают от общей раздельной ЦТП, при этом ПС должны удовлетворять высшей категории надежности ЭСН. Возможно объединение мелких цехов с крупными, ПС в этом случае размещают в крупных цехах.

При проектировании СЭС место расположения ПС выбирают по направлению потока энергии от ГПП к ЦТП, то есть по возможности избегают перетоков. При проектировании производят экономическое сравнение вариантов. Укрупнение ПС приводит к сокращению кабельных линий и количества трансформаторов, но в тоже время у трансформаторов большей мощности больше потери и они более сложны в обслуживании.

При выборе трансформаторов цеховых ПС можно предусмотреть резерв на расширение или замену оборудования на более мощное.

В данной главе будет произведен расчет и выбор силовых трансформаторов ПС 16, щита кранов и щита освещения, расположенных в ПС 16.


4.1 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА ПС 16 10/0,4кВ



Выбираем трансформатор ТМ – 1600кВА


В аварийном режиме при отключении одного трансформатора второй трансформатор будет работать со следующей перегрузкой:



Для масленых трансформаторов в послеаварийном режиме допускается перегрузка на 40% в течение 6 часов, 5 суток подряд [2], т.е. данный трансформатор работающий в послеаварийном режиме с коэффициентом загрузки 1,3 удовлетворяет необходимые требования.


4.2 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА ЩИТА КРАНОВ 0,38/0,23кВ



Выбираем трансформатор ТСЗ – 250кВА


4.3 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА ЩИТА ОСВЕЩЕНИЯ 0,38/0,23кВ



Выбираем трансформатор ТСЗ – 63кВА



5. Расчет токов трехфазного короткого замыкания


Коротким замыканием называют всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы электрическое соединение различных точек электроустановки между собой или с землей, при котором токи резко возрастают, превышая наибольший допустимый ток продолжительного режима.

Короткое замыкание является наиболее тяжелым видом повреждений для сетей электроснабжения. Причинами коротких замыканий могут быть: механические повреждения изоляции, поломка фарфоровых изоляторов, падение опор воздушных линий, старение изоляции, увлажнение изоляции, перекрытие фаз животными и птицами и другие. Короткое замыкание может возникнуть при неправильных оперативных переключениях, например при отключении нагруженной линии разъединителем, когда возникающая дуга перекрывает изоляцию между фазами. Последствиями короткого замыкания являются резкое увеличение тока в короткозамкнутой цепи и снижение напряжения в отдельных точках системы.

Возникают следующие виды короткого замыкания:

  1. Трехфазное междуфазное

  2. Трехфазное на землю

  3. Однофазное

Расчет токов короткого замыкания выполняется:

  1. Для проверки частей аппаратов на термическую стойкость.

  2. Для проверки частей аппаратов на электродинамическую стойкость, при сквозных коротких замыканиях.

  3. Для выбора уставок релейной защиты и автоматики.

Метод определения токов короткого замыкания зависит от типа источника питания и его удаленности. Расчеты выполняются с использованием ряда допущений в литературе [8].

Короткое замыкание рассматривается как переходный процесс, в течение которого ток изменяется от значений соответствующих для нормального режима до значений соответствующих новому установившемуся режиму короткого замыкания.

Для проверки на электродинамическую стойкость определяют ударный ток.

Ударный ток – это наибольшее из всех мгновенных значений токов короткого замыкания.

Ударные коэффициенты приводятся в справочных таблицах литературы [1], [2], [3].

На расчетной схеме (рис.1) указываются только те элементы, которые включены в цепь короткого замыкания. На основании расчетной схемы составляется схема замещения, в которой все элементы должны быть представлены соответствующими параметрами, рассчитываем аналитическим методом. Рассчитать токи 3-х фазного короткого замыкания на шинах 0,4кВ, кабельных линий 10кВ, 0,4кВ, 0,23кВ.

Данные: SБ=100 МВА; SКЗ= 100МВА Рассчитаем параметры схемы замещения, для этого задаемся

Sб = 100МВА


Х*с = = = 1 о.с. [8]


Таблица 2 «Сопротивление трехжильных кабелей». [16]

Кабельная линия KL

Индуктивное сопротивление Хо (Ом/км)

Активное сопротивление Rо (Ом/км)

Длинна l (км)

KL1

0,083

0,329

0,147

KL2

0,06

0,261

0,229

KL3

0,06

0,261

0,015

KL4

0,06

0,447

0,016


Определяем индуктивное сопротивление кабеля ХL1, KL2, KL3, KL4 [8]:



Определяем активное сопротивление кабеля RL1, KL2, KL3, KL4 [8]:



Таблица 3 «Значения ХТ и UК трансформаторов». [16]

Мощность тр-ра (МВА)

Индуктивное сопротивление Хт

UК (%)

1,6

4,06

6,5

0,25

18

4,5

0,063

71,2

4,5


Определяем индуктивное сопротивление трансформатора ХТ [8]:



Определяем индуктивное сопротивление трансформатора ХТ1 [8]:



Определяем индуктивное сопротивление трансформатора ХТ2 [8]:



Определяем ток короткого замыкания в точке К1 [8]:


;

.


Ударный ток в точке К1 [8]:


.


Определяем ток короткого замыкания в точке К2 [8]:


;

.


Ударный ток в точке К2 [8]:


.


Определяем ток короткого замыкания в точке К3 [8]:


;

.


Ударный ток в точке К3 [8]:


.


Определяем ток короткого замыкания в точке К4 [8]:


=

;

.


Ударный ток в точке К4 [8]:


.


Определяем ток короткого замыкания в точке К5 [8]:


;

.


Ударный ток в точке К5 [8]:


.


Определяем ток короткого замыкания в точке К6 [8]:


;

.



Ударный ток в точке К6 [8]:



Определяем ток короткого замыкания в точке К7 [8]:


;

.


Ударный ток в точке К7 [8]:



Таблица 4 «Значения токов КЗ в точках К1 – К7»

Точки КЗ

IКЗ (кА)

IУД (кА)

К1

5,6

0,08

К2

27,4

61,9

К3

3,6

8,1

К4

23

52

К5

19,9

45

К6

10

22,6

К7

3,2

7,2



6. Расчет и выбор кабеля 10кВ


При проектировании внутризаводских сетей расчет линий сводится к выбору марки и сечения кабеля.

Марку кабеля выбирают по рекомендациям литературы [9]. Сечение выбирают из четырех условий:

  1. По длительно допустимому нагреву Iр max [9]


Iдл. доп.Iр max [9]

, А [9]

, кВА [9]


  1. По экономической плотности:


, мм2 [9]


где:

- расчетный ток в нормальном режиме, А;

- экономическая плотность тока определяется по справочным таблицам в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год (А/мм2). Число часов использования максимальной активной нагрузки по Тм приводится в литературе [16].

  1. По допустимой потере напряжения


[1]

[1]

[9]


где:

Pp и Qp – мощности передаваемые по линии в кВт и кВар (табл.1);

Uср ном – средне-номинальное напряжение сети;

R=ro*l – активное сопротивление;

X=xo*l – индуктивное сопротивление;

ro, xo - удельное сопротивление кабелей из литературы [3];

l – длина линии, в км.

  1. Проверка на термическую стойкость КЗ[9]:


[9]


где: Bк – тепловой импульс, А·с


[9]


где - действующее значение периодической составляющей тока трехфазного КЗ в начале и конце линии (табл.4);

- приведенное или расчетное время КЗ складывается из времени релейной защиты и собственного времени отключения;

СТ – термический коэффициент, учитывающий разницы нагрева в нормальных условиях и в условиях КЗ, с учетом допустимой температуры и материала проводника, из литературы [16].

Четвертое условие можно проверить только после расчета токов КЗ.

Расчетная часть:

Выбираем марку кабеля: АПвП.

1) Выбираем сечение кабеля для ПС 16, Sтр = 1600кВА



Из таблицы 1.3.16 ПУЭ выбираем:


Iдл. доп.=170А; S=95мм2, Iдл. доп.Iр max


2) Предприятие металлургическое с непрерывным режимом работы Тм= 7000 часов в год.


=1,6А/мм2; Iр= 92,3 А;


Оставляем сечение 95мм2


3) ro=0,329 Ом/км; xo=0,083 Ом/км (l=0,147км);


R=0,329 · 0,147=0,048 Ом; X=0,083 · 0,147=0,01 Ом;

4) СТ=95; tпривед=2+0,055=2,055 сек;

=8027,7

По всем условиям выбранный кабель подходит.


7. Выбор аппаратов защиты 0,4кВ


Для защиты распределительных линий и ЭП, подключенных к ним, используются автоматические выключатели типа ВА и АЕ и плавкие предохранители. Эти аппараты устанавливаются в силовых распределительных шкафах.

Шинопроводы позволяют установку автоматов. Автоматический выключатель имеет тепловой, электромагнитный и комбинированный расцепитель. При наличии теплового расцепителя автомат осуществляет защиту от перегрузки (увеличения тока). Электромагнитный расцепитель обеспечивает защиту от короткого замыкания. Комбинированные расцепители выполняют защиту линии и электроприёмников от перегрузки и от КЗ.


7.1 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ СБОРНЫХ ШИН ПС 16


Для выбора автоматического выключателя, защищающего секцию сборных шин от перегрузок и токов КЗ, исходим из следующих условий:


[1],


где:

Uн.а. – номинальное напряжение автомата

Uсети – напряжение сети

Iн.а. – номинальный ток автомата

Iрасч – расчетный ток

Выбираем автоматический выключатель NA 1 - 4000, т.к.


Uн.а.  Uсети 400  380

Iн.а.  Iрасч. 4000  3327,3


Проверяем автомат на электродинамическую стойкость от действия ударных токов короткого замыкания:


Iуд<Iэл [1]

61,9кА < 80кА


Проверим автоматический выключатель на надежность срабатывания защиты в условиях однофазных КЗ:

Исходя из проверки видно, что автоматический выключатель удовлетворяет всем условиям.


7.2 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ТРАНСФОРМАТОРА ЩИТА КРАНОВ


Согласно справочника номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий силовых трансформаторов ТСЗ250 выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные


Uн.а. = 380В, Iн.а.= 400А, Iн.р.= 380А.


Проверяем автомат исходя из расчетных данных:


Uн.а. Uэл. сети, 380 В = 380 В

Iн.а.Iрасч. 400А > 379 А


Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.3 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ТРАНСФОРМАТОРА ЩИТА ОСВЕЩЕНИЯ


Согласно справочника номинальный ток автомата ВА5133 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий силовых трансформаторов ТСЗ 63 выбираем автоматический выключатель ВА5133 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные

Uн.а. = 380В, Iн.а.= 160А, Iн.р= 95,7А.

Проверяем автомат исходя из расчетных данных:

Uн.а. Uэл.сети, 380 В = 380 В

Iн.а. Iрасч. 160А > 95,7 А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.4 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ СЕКЦИЙ ШИН ЩИТА КРАНОВ


Согласно справочника номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита кранов выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В,

Iн.а.= 1000А, Iн.р.= 703,26А.

Проверяем автомат исходя из расчетных данных:

Uн.а. Uэл.сети, 380 В > 220 В

Iн.а.Iрасч. 1000А > 703,26А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.5 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ СЕКЦИЙ ШИН ЩИТА ОСВЕЩЕНИЯ


Согласно справочнику номинальный ток автомата ВА5735 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита освещения выбираем автоматический выключатель ВА5735 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В, Iн.а.= 250А, Iн.р.=162,41А.

Проверяем автомат исходя из расчетных данных:


Uн.а. Uэл.сети, 380 В > 220 В

Iн.а.Iрасч. 250А > 162,41А


Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.6 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ДВИГАТЕЛЯ ВЫТЯЖНОЙ ВЕНТИЛЯЦИИ


Согласно справочнику номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита освещения выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В, Iн.а.= 400А, Iн.р.= 303А.

Проверяем автомат исходя из расчетных данных:

Uн.а. Uэл.сети, 380 В ≥ 380 В

Iн.а.Iрасч. 400А > 303А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


7.7 ВЫБОР АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ДЛЯ ДВИГАТЕЛЯ ПРИТОЧНОЙ ВЕНТИЛЯЦИИ


Согласно справочнику номинальный ток автомата ВА5139 не должен быть менее расчетного тока линии, т.е. при выборе автомата должны соблюдаться следующие условия:



Для защиты питающих линий секций шин щита освещения выбираем автоматический выключатель ВА5139 с комбинированным расцепителем, по условию длительно допустимого тока линии, равного в данном случае расчетному номинальному току силового трансформатора. Автоматический выключатель имеет следующие технические данные Uн.а. = 380В, Iн.а.= 250А, Iн.р.= 152А.

Проверяем автомат исходя из расчетных данных:

Uн.а. Uэл.сети, 380 В ≥ 380 В

Iн.а.Iрасч. 250А > 152А

Отсюда следует, что автоматический выключатель удовлетворяет предъявляемым требованиям.


8. Расчет и выбор питающих линий 0,4кВ


Электрические сети 0,4 кВ являются наиболее распространенными, они применяются на всех промышленных и сельскохозяйственных предприятиях, электростанциях и подстанциях. От этих сетей во многом зависит надежная работа предприятий.

За последние годы техническая оснащенность сетей 0,4 кВ существенно изменилась. Получили распространение понижающие трансформаторы 6(10)/0,4 кВ большой мощности (1000, 1600, 2500 кВ, что привело к значительному увеличению значений токов короткого замыкания (КЗ). Созданы новые типы защитных аппаратов, способных отключать эти токи, а также ограничивать их максимальное значение, уменьшать их термическое и электродинамическое действие на защищаемые сети и аппаратуру. Для получения регулируемых защитных характеристик стали применяться выключатели с полупроводниковыми и цифровыми (микропроцессорными) разделителями. Наряду с этим совершенствуются расчетные методы выбора аппаратуры и защит.


8.1 РАСЧЕТ И ВЫБОР ПИТАЮЩЕГО КАБЕЛЯ К ТРАНСФОРМАТОРУ ЩИТА КРАНОВ


Расчет кабельных линий сводится к выбору марки и сечения кабеля. Марку кабеля выбирают по [9]. Сечение выбирают наибольшее из четырех расчетных условий.

Условие выбора сечения по длительно-допустимому нагреву максимальным расчетным током имеют вид [1]:


,


где

Iдл.доп. – длительно допустимый ток

Iрасч.мах. – расчетный максимальный ток

Если в условиях эксплуатации ток в линии не превышает длительно-допустимого тока провода или кабеля, то гарантируется нормальный срок службы изоляции, и её сохранность от преждевременного теплового износа. Систематические превышения тока в линии над допустимыми значениями (токовые перегрузки) повышают вероятность нарушения электрической прочности изоляции за счёт старения. Длительно-допустимые токи приводятся в таблицах ПУЭ с учётом материалов токоведущих жил и изоляции. Длительно-допустимые токи устанавливаются по длительно-допустимой температуре нагрева токоведущих жил с учётом температуры окружающего воздуха (земли). Если провода и кабели работают в условиях повышенных температур окружающей среды или других условиях ухудшающих тепловой режим изоляции (плохая теплоотдача), то на длительно-допустимые токи вводят понижающие поправочные коэффициенты. В условиях пониженных температур поправочные коэффициенты больше единицы. Такие поправочные коэффициенты приводятся в ПУЭ.

1. По условию длительно допустимого нагрева максимальным расчетным током:



По таблице 6.11 [9] выбираем 2 кабеля АВАШв 3x120 (кабель с алюминиевыми жилами с изоляцией из поливинилхлоридного пластика, с алюминиевой оболочкой, с защитным покровом типа Шв, с сечением жилы 120мм2) Далее, проверяем выбранный кабель по следующим условиям:

2. По экономической плотности тока [9]:


, мм2,


где Iр.ном. - расчетный ток в нормальном режиме, А.

γэк - экономическая плотность тока

Iр.ном.=Iр.мах./2=380/2=190 А

γэк. определяется в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год – Тм

Тм=7000час/год - по таблице 3.5 [16] γэк. = 1,6 А/мм2


мм2


Исходя из этого выбираем жилы сечением 120мм2

3.По допустимой потере напряжения [9]:



где Pp и Qp – мощности передаваемые по линии в кВт и кВар (табл.1) ;

Uср ном – средне-номинальное напряжение сети;

R=ro·l – активное сопротивление;

X=xo·l – индуктивное сопротивление;

ro, xo - удельное сопротивление кабелей из литературы [9]

l – длина линии, в км.

ro=0,261/2 = 0,1305 Ом/км; xo=0,06/2 =0,03 Ом/км (l=0,015км);

R=0,1305 · 0,015=0,002 Ом; X=0,03 · 0,015=0,00045 Ом;

4. Проверка на термическую стойкость КЗ[9]:



где Bк – тепловой импульс, А с


Ст=95; tпривед=0,02 сек;

=3252,7


Окончательно выбираем кабель АВАШв 2(3x120)


8.2 РАСЧЕТ И ВЫБОР ПИТАЮЩЕГО КАБЕЛЯ К ТРАНСФОРМАТОРУ ЩИТА ОСВЕЩЕНИЯ


Расчет кабельных линий сводится к выбору марки и сечения кабеля. Марку кабеля выбирают по [9]. Сечение выбирают наибольшее из четырех расчетных условий.

Условие выбора сечения по длительно-допустимому нагреву максимальным расчетным током имеют вид:


,


где

Iдл.доп. – длительно допустимый ток

Iрасч.мах. – расчетный максимальный ток

1. По условию длительно допустимого нагрева максимальным расчетным током:



По таблице 6.11 [9] выбираем кабель АВАШв 3x70 (кабель с алюминиевыми жилами с изоляцией из поливинилхлоридного пластика, с алюминиевой оболочкой, с защитным покровом типа Шв, с сечением жилы 70мм2)

Далее, проверяем выбранный кабель по следующим условиям:

2. По экономической плотности тока [9];


, мм2,


где

Iр.ном. - расчетный ток в нормальном режиме, А.

γэк. - экономическая плотность тока

Iр.ном.= Iр.мах.= 95,7 А

γэк. определяется в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год – Тм

Тм=7000час/год - по таблице 3.5 [16] γэк. = 1,6 А/мм2

Исходя из этого выбираем жилы сечением 70мм2

3.По допустимой потере напряжения [9]:




где Pp и Qp – мощности передаваемые по линии в кВт и кВар (табл.1);

Uср ном – средне-номинальное напряжение сети;

R=ro· l – активное сопротивление;

X=xo· l – индуктивное сопротивление;

ro, xo - удельное сопротивление кабелей из литературы [9];

l – длина линии, в км.

ro = 0,447 Ом/км; xo=0,06 Ом/км (l=0,016км);

R=0,447 · 0,016=0,007 Ом; X=0,06 0,016=0,00096 Ом;

4. Проверка на термическую стойкость КЗ [9]:



где

Bк – тепловой импульс, А с



Ст= 95; tпривед= 0,02 сек;

=2814,28

Окончательно выбираем кабель АВАШв - 3x70

8.3 РАСЧЕТ И ВЫБОР ПИТАЮЩЕГО КАБЕЛЯ К ДВИГАТЕЛЮ ВЫТЯЖНОЙ ВЕНТИЛЯЦИИ


Случайные файлы

Файл
kram-2.doc
_1E8E7~1.DOC
12853-1.rtf
89701.rtf
103971.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.