Термодинамические основы термоупругости (151011)

Посмотреть архив целиком

Содержание


Введение

1 Термодинамические основы термоупругости

1.1 Термоупругость

1.2 Построение задачи термоупругости

1.3 Виды задач: связанная и несвязанная

2 Модель термоупругой среды

2.1 Понятие модели сплошной среды: простые и сложные

2.2 Постановка задач в механике сплошных сред

3 Линейная термоупругая сплошная среда

3.1 Классическая термоупругость

3.2 Термоупругая среда с внутренними параметрами состояния

3.3 Тепловой удар

3.4 Плоские гармонические термоупругие волны расширения в неограниченной среде

3.5 Задача отражения преломления термоупругих волн в матричной формулировке. Коэффициенты отражения преломления

Заключение

Список использованных источников



Введение


В последнее время теория термоупругости получила существенное развитие в связи с важными проблемами, возникающими при разработке новых конструкций паровых и газовых турбин, реактивных и ракетных двигателей, высокоскоростных самолетов, ядерных реакторов и др. Элементы этих конструкций работают в условиях неравномерного нестационарного нагрева, при котором изменяются физико-механические свойства материалов и возникают градиенты температуры, сопровождающиеся неодинаковым тепловым расширением частей элементов.

Неравномерное тепловое расширение в общем случае не может происходить свободно в сплошном теле; оно вызывает тепловые (термические, температурные) напряжения. Знание величины и характера действия тепловых напряжений необходимо для всестороннего анализа прочности конструкции.

Тепловые напряжения сами по себе и в сочетании с механическими напряжениями от внешних сил могут вызвать появление трещин и разрушение конструкции из материала с повышенной хрупкостью. Некоторые материалы при быстром возникновении напряжений, обусловленном действием резко нестационарного температурного поля, становятся хрупкими и не выдерживают теплового удара. Повторное действие тепловых напряжений приводит к термоусталостному разрушению элементов конструкции. Действие тепловых напряжений может вызвать значительную пластическую деформацию, ведущую к полному или прогрессирующему разрушению конструкции, термовыпучивание тонкостенной конструкции и т. п.

Исследования по термоупругости сначала стимулировались задачами о термоупругих напряжениях в элементах конструкций. Они проводились на основе теории, разработанной Дюамелем (1838) и Нейманом (1841), которые исходили из следующего предположения: полная деформация является суммой упругой деформации, связанной с напряжениями обычными соотношениями, и чисто теплового расширения, соответствующего известному из классической теории теплопроводности температурному полю.

С принципиальной точки зрения теория Дюамеля — Неймана [1], [2] для нестационарных тепловых и механических воздействий оказалась ограниченной: она не позволяет строго описать движение упругого тела, связанное с его тепловым состоянием. При определенных условиях нестационарный нагрев сопровождается динамическими эффектами в конструкции.

В общем случае изменение температуры тела происходит не только вследствие подвода тепла от внешних источников, но и в результате самого процесса деформирования. При деформировании тела от механических или тепловых воздействий, протекающих с большой скоростью, возникает так называемый эффект связанности, обусловленный взаимодействием полей деформации и температуры. Он проявляется в образовании и движении тепловых потоков внутри тела, возникновении связанных упругих и тепловых волн, термоупругом рассеянии энергии и т. п.

Последовательное рассмотрение процессов упругого деформирования и теплопроводности в их взаимосвязи возможно только на основе термодинамических соображений. Томсон (1855) [3] впервые применил основные законы термодинамики для изучения свойств упругого тела. Ряд исследователей Л.Д. Ландау и Е.М. Лифшиц (1953) [4] и др. с помощью методов классической термодинамики получили связанные уравнения термоупругости. Однако в рамках классической термодинамики строгий анализ справедлив лишь для изотермического и адиабатического обратимых процессов деформирования. Реальный процесс деформирования, неразрывно связанный с необратимым процессом теплопроводности, является в общем случае также необратимым. Термодинамика необратимых процессов, разработанная в последние годы, позволила более строго поставить задачу о необратимом процессе деформирования и дать единую трактовку механических и тепловых процессов, нашедшую отражение в работах Био (1956), Чедвика (1960), Боли и Уэйнера (I960) и др. В связи с этим более четко определилась теория термоупругости, обобщающая классическую теорию упругости и теорию теплопроводности. Она охватывает следующие явления: перенос тепла теплопроводностью в теле при стационарном и нестационарном теплообмене между ним и внешней средой; термоупругие напряжения, вызванные градиентами температуры; динамические эффекты при резко нестационарных процессах нагрева и, в частности, термоупругие колебания тонкостенных конструкций при тепловом ударе; термомеханические эффекты, обусловленные взаимодействием полей деформации и температуры.

Сановное положение термодинамики необратимых процессов, вытекающее из предположения о локальном термодинамическом равновесии, заключается в том, что первый и второй законы классической термодинамики справедливы и для локально равновесных макроскопических частей системы. Для математического выражения второго закона термодинамики в случае твердых деформируемых тел, состояние которых определяется большим числом независимых переменных, удобной является формулировка, разработанная Н.Н. Шиллером (1897—1901) [5], Каратеодори (1909) [6] и Т.А. Афанасьевой-Эренфест (1925—1928) [7]. В этой формулировке устанавливается общий эмпирический принцип о невозможности определенных процессов — принцип адиабатической недостижимости. Принципы локального термодинамического равновесия и адиабатической недостижимости позволили использовать разработанный Гиббсом (1875—1878) метод термодинамических функций для вывода соотношений между напряжениями и деформациями, выражений для свободной энергии, внутренней энергии, энтропии и связанного уравнения теплопроводности.

В теории термоупругости обычно накладывается ограничение на величину термического возмущения: приращение температуры предполагается малым по сравнению с начальной абсолютной температурой. Снятие этого ограничения не нарушает предположения о малости деформаций, но приводит к появлению нелинейных членов в связанных уравнениях термоупругости. Возможно построение единой теории термоупругости без указанного ограничения в рамках предположения о малости деформаций, учитывающей зависимость упругих и термических коэффициентов от температуры. В общем случае она является нелинейной теорией связанной термоупругости и в качестве частных случаев охватывает как линейную теорию связанной термоупругости при малом термическом возмущении, так и теорию несвязанной термоупругости при большом термическом возмущении, использующую линейные уравнения движения и нелинейное уравнение теплопроводности.

При исследовании динамических задач термоупругости учет связанности полей деформации и температуры дает возможность выявить новые качественные особенности протекания процесса деформирования. Анализ сравнительно простого решения одномерной задачи о распространении плоских гармонических термоупругих волн в неограниченном теле позволяет правильно понять основные черты термоупругих явлений при разных частотах волн и параметрах связанности материала. В качестве основных граничных связанных задач термоупругости следует отметить двумерные задачи о распространении плоских термоупругих волн вдоль поверхности полупространства и продольных термоупругих волн в длинном цилиндре.

Построение решений связанных задач термоупругости для тел конечных размеров вызывает значительные математические трудности. Большой интерес поэтому представляют вариационные принципы связанной термоупругости, и в частности вариационный принцип Био, позволяющие развить приближенные методы решения связанных задач динамической теории упругости и нестационарной теплопроводности.

Все выше сказанное доказывает актуальность и ценность темы термоупругости и изучения ее моделей.

Математические модели и методы термомеханики. В математических моделях термомеханики рассматривают различные способы распространения тепла в сплошных средах. Считается, что распространение тепла может проходить за счет теплопроводности (тепло передается через само вещество), конвекции (тепло передается за счет относительного движения частиц нагретого тела) и излучения (перенос тепла осуществляется за счет электромагнитного излучения). Математические модели теплопроводности были впервые разработаны в XIX в. в работах С. Duhamel и G. Lame [8]. Систематическое изложение методов теплопроводности дано в работах А. В. Лыкова [9], Г. Карслоу, Д. Егеря [10]. Тепло за счет теплопроводности распространяется при наличии распределенных и точечных источников и стоков тепла в теле. Распространение тепла всегда сопровождается также возникновением в теле напряжений, деформаций и, быть может, электромагнитных полей. Исследованию напряженно-деформированного состояния тел с учетом различных связей между напряжениями, деформациями и температурой, а также электромагнитными полями, и составляет основу современных моделей термомеханики. Например, предложены математические модели, в которых отражены зависимость температуры от времени, от теплофизических постоянных материала, различных форм взаимодействия полей температур и деформаций, связи тепловых, упругих и электромагнитных полей, способа задания температурных полей и др. Разработаны математические модели решения задач. Коротко остановимся на некоторых из этих моделей и методов.


Случайные файлы

Файл
diploma.doc
184578.doc
druk.doc
31839.rtf
80134.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.