Расчет электромагнитного реле постоянного тока типа РС52 (150791)

Посмотреть архив целиком

Министерство образования и науки Украины

Национальный технический университет

«Харьковский политехнический институт»

Кафедра «Автоматика и управление в технических системах»





Пояснительная записка к курсовому проекту по курсу:

«Элементы и устройства автоматики и систем управления»

по теме:


«Расчет электромагнитного реле постоянного тока типа РС52»






Выполнил:

Студент группы xxxxxxxxxxxx

xxxxxxxxxxxx

зачетной книжки - 03029

Принял:

xxxxxxxxx

xxxxxxxxxxx





Харьков 2006


Содержание


Введение

1. Техническое задание

2. Технические характеристики устройства

3. Расчет электромагнитного реле

4. Расчет и построение кривых намагничивания магнитной системы

5. Определение минимального числа ампер-витков срабатывания

6. Расчет и построение тяговой характеристики

7. Расчет обмоточных параметров реле

Вывод

Список литературы


Введение


Электромеханические элементы (наряду с электромагнитными) являются наиболее старыми электрическими элементами автоматики. Тем не менее, видоизменяясь и совершенствуясь, они успешно конкурируют с относительно новыми магнитными элементами.

Электромагнит – наиболее простой преобразователь электрического сигнала в механическое усилие и перемещение. Входной электрический сигнал подается на обмотку электромагнита, который притягивает подвижную часть, называемую якорем.

По роду тока в обмотке различают электромагниты постоянного и переменного тока. Электромагниты постоянного тока подразделяют на нейтральные и поляризованные. Нейтральные притягивают якорь при любой полярности тока в обмотке. В поляризованных электромагнитах направление усилия, действующего на якорь, изменяется при изменении полярности тока в обмотке.

Часто электромагниты являются приводными (тяговыми) и служат для перемещения таких исполнительных устройств, как клапаны, заслонки и т.п. Однако наибольшее распространение получили электромагниты, снабженные контактной системой – электромагнитные реле.

Электромагнитные реле являются одним из распространенных элементов многих систем автоматики, и выпускается свыше 200 типов только реле постоянного тока.

Реле предназначено для выполнения логических операций и непосредственного управления силовыми нагрузками небольшой мощности, устанавливаются в низковольтных комплектных устройствах управления промышленными объектами, а также в устройствах торговой, медицинской и подобной техники. По величине потребляемой при срабатывании мощности реле можно подразделить на высокочувствительные (до 10 мВт) и слаботочные нормальной чувствительности (до 1-5 Вт).

Реле можно разделить по временным параметрам на нормальные, быстродействующие и замедленные, так называемые реле времени.

К электромагнитным реле предъявляют разнообразные требования, которые не всегда удается удовлетворить в одной конструкции. Прежде всего задаются требования чувствительности и коммутируемой мощности. Часто реле должны иметь малые габариты, большое число переключаемых цепей (контактов), обладать большим сроком службы и достаточной надежностью работы в условиях вибрации, при резких колебаниях температуры и влажности, малым временем срабатывания и отпускания, а иногда и значительной выдержкой времени при срабатывании или отпускании.

В качестве средств автоматизации во всех отраслях промышленности широкое применение находят электромагнитные элементы автоматики, значительную долю которых составляют различные электромагнитные механизмы. В связи с этим знание теории, практики расчета и основ оптимального проектирования последних является необходимым для инженеров различных специальностей, особенно инженеров-электриков и инженеров-электромехаников.

Применение электромагнитных реле в радиоэлектронной аппаратуре предъявляет ряд существенных требований к технической документации, к литературе и, в конечном счете, к знаниям разработчиков аппаратуры. Оптимальное удовлетворение этих требований позволяет уменьшить массу и габариты, снизить стоимость, повысить стойкость к внешним дестабилизирующим факторам, надежность и долговечность радиоэлектронной аппаратуры.


1. Техническое задание


На курсовое проектирование по курсу:

«Элементы и устройства автоматики и систем управления»

Задание: «Расчет электромагнитного реле постоянного тока типа РС52»

Исходные данные:

Uпит = 24 В;

Материал: сталь низкоуглеродистая электротехническая марки Э отожженная;

Контакты: 2 разомкнутых, 2 замкнутых.

Расчетно-пояснительная записка должна содержать:

введение, технические условия на устройство;

расчет магнитной цепи;

расчет и построение кривых намагничивания магнитной системы;

определение минимального числа ампервитков срабатывания;

расчет и построение тяговой характеристики;

расчет обмотки.


2. Технические характеристики реле РС52


Реле РС52 – открытое, одностабильное, с двумя контактными группами, с сочетанием размыкающих, замыкающих и переключающих контактов, предназначено для коммутации электрических цепей постоянного и переменного тока частотой до 400 Гц.

Реле РС52 соответствует требованиям ГОСТ 16121-86 и техническим условиям КЩО-450-017ТУ.

Условия эксплуатации

Температура окружающей среды от – 60 до + 70 C.

Циклическое воздействие температур -60 и +70 C.

Повышенная относительная влажность до 98 % при температуре +20 C.

Атмосферное давление от 2103 до 106103 Па.

Синусоидальная вибрация (вибропрочность и виброустойчивость) в диапазоне частот от 5 до 80 Гц – с ускорением не более 100 м/с2.

Ударная прочность

При многократных ударах с ускорением не более 1500 м/с2 – 250 ударов, с ускорением не более 750 м/с2 – 4000 ударов.

Постоянно действующие линейные ускорения не более 200 м/с2.

Технические характеристики

Ток питания – постоянный.

Сопротивление изоляции между токоведущими элементами, между токоведущими элементами и корпусом, МОм, не менее:

- в нормальных климатических условиях (обмотки обесточены) 200

- в условиях повышенной влажности 10

- при максимальной температуре (после выдержки обмотки под рабочим напряжением) 200

Испытательное переменное напряжение, В:

между токоведущими элементами, между токоведущими элементами и корпусом:

- в нормальных климатических условиях 900

- в условиях повышенной влажности 500

- при пониженном атмосферном давлении 250

между изолированными обмотками:

- в нормальных климатических условиях 500

- в условиях повышенной влажности 300

- при пониженном атмосферном давлении 250

Сопротивление электрического контакта в стадии поставки 0,5 Ом, в процессе эксплуатации и хранения 2 Ом. Масса реле не более 110 г.


3. Расчет электромагнитного реле


Расчет проводимости рабочего зазора

Расчет магнитной цепи сводится к вычислению магнитной проводимости рабочего и нерабочего воздушных зазоров, проводимости утечки, коэффициента рассеяния потока и производной проводимости рабочего зазора для нескольких положений якоря.


Рисунок 1 - эскиз воздушных зазоров


Исходные данные:

Ширина полюсного наконечника d=0,017м;

Толщина полюсного наконечника c=0,00005 м.

Расстояние от оси вращения якоря до оси симметрии сердечника магнитной системы R0=0,01425 м.

5.толщина немагнитной прокладки =0.001 м;

6.толщина скобы a=0,003 м;

Расчетная формула для проводимости имеет вид:

,(3.1.1)

где: - величина рабочего воздушного зазора;

0 =410-7 Гн/м - магнитная постоянная;

К – коэффициент, учитывающий неравномерность магнитного поля

, =2R0/d=1,68

где Rр – магнитное сопротивление рабочего воздушного зазора, Гн-1.

Затем рассчитаем магнитное сопротивление рабочего воздушного зазора Rр по формуле:

; (3.1.2)

Производная магнитной проводимости имеет вид:

.(3.1.3)

Вычисления магнитной проводимости производятся для трех значений рабочих воздушных зазоров: 1=0,510-3 м; 2=110-3 м; 3=1,510-3 м.

Полученные значения магнитной проводимости и производной магнитной проводимости сводим в табл. 1.

при δр1= 0,5 ·10-3м:

при δр2=1,0 ·10-3м:

при δр3=1,5 ·10-3м:


Таблица 1 – Значения магнитной проводимости и производной магнитной проводимости.

p10-3, м

0,5

1,0

1.5

Gp10-7, Гн

7,305

3,98

2,82

Rp10-7 , Гн-1

0.1369

0.2513

0.355

10-4, Гн/м

12.98

3.419

1.572


Построим график зависимости Gp=f(p) Рисунок 2



Расчет магнитной проводимости нерабочего зазора

Рассчитаем магнитную проводимость нерабочего воздушного зазора, который находится между прямоугольным якорем, расположенным под углом, и прямоугольной скобой. При этом принимаем следующие допущения:

зазор образован двумя параллельными плоскостями;

краевые потоки равны нулю и магнитная проводимость определяется по упрощенной формуле:

,(3.2.1)

гдеGн- магнитная проводимость нерабочего зазора, Гн;

Sн- площадь нерабочего зазора, м2;

δн- величина нерабочего зазора, м;






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.