Проектирование элементов систем электроснабжения сельского хозяйства (150692)

Посмотреть архив целиком


Аннотация


Курсовой проект выполнен в объеме: расчетно-пояснительная записка на 38 листов формата А4, лист с индивидуальным заданием, 18 таблиц, 5 рисунков, 2 листа формата А1 с выполненной на них графической частью проекта.

Ключевые слова:

электроснабжение;

трансформатор;

мощность;

напряжение;

нагрузка;

потери;

надбавки;

регулировочное ответвление;

послеаварийный режим.

В данном курсовом проекте был осуществлен расчет и проектирование Высоковольтной линии-110 кВ для электроснабжения сельского хозяйства.


Содержание

Введение

Исходные данные к проектированию

1.1 Составление схемы сети 110 кВ

1.2 Выбор числа и мощности трансформаторов ТП

1.3 Приведение нагрузок к высшему напряжению

1.4 Расчет сложнозамкнутой сети 110 кВ

1.5 Выбор сечений проводов участков линии 110 кВ

1.6 Определение токораспределения по участкам с учетом сопротивлений выбранных проводов без учета потерь мощности

1.7 Определение потерь в узлах с учетом потерь мощности

1.8 Выбор надбавок (ответвлений) трансформатора

1.9 Расчет послеаварийного режима

1.10 Анализ и заключение по результатам электрического расчета режимов работы сети

2. Механический расчет воздушной линии 110 кВ

2.1 Выбор материала и типа опор ВЛ-110 кВ

2.2 Определение удельных нагрузок на провода

2.3 Определение критических пролетов

2.4 Систематический расчет проводов и тросов

2.5 Расчет монтажных стрел провеса

Литература


Введение


В данном курсовом проекте был осуществлен расчет и проектирование ВЛ-110 кВ для электроснабжения сельского хозяйства.

В ходе расчета был произведен выбор числа и мощности трансформаторов; составление схемы замещения; выбор сечения проводов линии 110 кВ; определение напряжения; расчет послеаварийного режима; выбор материала и типа опор ВЛ; определение критических пролетов; расчет монтажных стрел провеса.

Данное курсовое проектирование имеет цель ознакомления с основными приемами и методами проектирования элементов систем электроснабжения сельского хозяйства, проявления навыков самостоятельной работы с технической литературой и нормативными документами, дает возможность проявить самостоятельность в выборе решений, связанных с оптимизацией параметров сети.


Исходные данные к проектированию


Вариант № 24:

Напряжение на шинах опорного узла А: 119 кВ.

Номер линии в аварийном состоянии: .

Климатические условия:

район по ветру: ;

район по гололеду: ;

температура:

высшая: ;

средняя: ;

низшая: .

Время использования максимальной нагрузки: ч.

Длины участков:


км; км; км; км; км; км; км.


Мощность потребителя (МВА) /соs:

ТП1: ; ТП2: ; ТП3: ; ТП5: ; ТП6: .



1.1 Составление схемы сети 110 кВ


Составляем расчетную схему трансформаторных подстанций с учетом варианта:






Рис.1. Схема сети с опорным узлом А.


1.2 Выбор числа и мощности трансформаторов ТП


Принимаем по умолчанию II категорию потребителей, терпящих перерывы в электроснабжении. Соответственно, на подстанциях устанавливаем по одному трансформатору. Его мощность выбираем с учетом длительно допустимой 30% перегрузки.

Трансформаторы выбираем по каталожным данным [1,2,3] с учетом заданной мощности потребителей и уровня номинального напряжения. Сведения заносим в таблицу:


Таблица 1. Технические данные выбранных трансформаторов

ТП

Тип

, МВА

Пределы регулиро-вания

Каталожные данные

Расчетные данные

обмоток, кВ

,%

, кВт

, кВт

,%

, Ом

, Ом

, квар

ВН

НН

1

ТМН -

16

115

6,5; 11

10,5

85

19

0,7

4.38

86.7

112

2

ТМН -

10

115

6,6; 11

10,5

60

14

0,7

7,95

139

70

3

ТМН

16

115

6,5; 11

10,5

85

19

0,7

4.38

86.7

112

5

ТМН -

25

115

6,5; 10,5

10,5

120

27

0,7

2,54

55,9

175

6

ТМН -

25

115

6,5; 10,5

10,5

120

27

0,7

2,54

55,9

175


1.3 Приведение нагрузок к высшему напряжению


Нагрузка электрической сети задана на шинах низшего напряжения ТП. Вместе с тем, нагрузка высшего напряжения больше заданной нагрузки на величину потерь мощности в трансформаторах. Кроме того, необходимо учитывать тот факт, что линия обладает зарядной мощностью, которая уменьшает общую реактивную нагрузку сети.

Приводим заданные нагрузки к высшему напряжению, используя формулу:


,


где , - соответственно активная и реактивная мощности, заданные на

вторичной стороне ТП;

, - суммарные активные и реактивные сопротивления трансформа-

торов данной ТП;

- номинальное напряжение трансформатора;

- суммарная зарядная мощность линий, приложенная в точке

подключения данной нагрузки (ТП).

Зарядную мощность определяем, (Мвар):


,


где - номинальное напряжение сети;

- суммарная длина линий;

- реактивная проводимость линии (принимаем для минимального сечения (70 мм2) См/км).

Так как, зарядная мощность распространяется по всей длине линии, то принято схематично распределять ее в начале и в конце линии. Поэтому, полученное в точке подключения нагрузки, т.е. На шинах высшего напряжения ТП, необходимо разделить на два.


(Мвар);

(Мвар);

(Мвар);

(Мвар);

(Мвар).

;

;

;

;

.


1.4 Расчет сложнозамкнутой сети 110 кВ


Для расчета необходимо составить схему замещения электрической сети, в которой - направление мощности становится произвольно, определяется число независимых контуров.

Расчет такой сети ведут в 2 этапа: определяют потокораспределение на участках без учета потерь мощности; рассчитывают потери мощности, потокораспределение по участкам с учетом потерь мощности и направление в точках сети.


1 2


3

A

6 5


Рис. 2. Схема электрической сложнозамкнутой сети.


Определяем число независимых контуров и задаемся неизвестными мощностями, согласно числу контуров: и . Затем выражаем потоки мощностей на каждом участке через принятые неизвестные мощности. Выраженные мощности участков сводив в таблицу:


Для узла 6:




Для узла 3:




Аналогично для остальных узлов.


Таблица 2. Выраженные мощности участков

участка

Выраженные мощности участков


Выполним проверку правильности вычисления: сумма всех мощностей должна быть равна мощности источника (точка ):


.


Для нахождения и составим систему:



Для контура:

по :


;


по :



Для контура:

по :


;


по :


.


Получаем две системы уравнений:


и .


Перегруппируем системы для дальнейшего их решения:


и .


Решая данные системы находим соответственно: ; ; ; ;

Подставляем в таблицу 2 вместо , , , их значения:


Таблица 3. Численные значения выражений мощностей участков

участка

Выраженные мощности участков


1.5 Выбор сечений проводов участков линии 110 кВ


Зная мощности участков линий, определяем полную мощность и ток, протекающий по ним, а полученные данные сводим в таблицу 4.

Расчет производим по следующим формулам:


; ,


Таблица 4. Расчетные данные

участка

Выраженная мощность

Полная мощность , МВА

Ток на участке , А


Выбор сечения проводов линии 110 кВ проводится с учетом ряда факторов, например, технико-экономическое сравнение различных вариантов капиталовложений, т.е. сечения проводов должны соответствовать оптимальному соотношению между капитальными затратами на сооружение линий, которые растут с увеличением сечения провода, и расходами, связанными с потерями энергии, уменьшающимися при увеличении сечений проводов. Немаловажным показателем является механическая прочность проводов воздушных линий, а также условия образования короны. Однако для упрощенных решений этой задачи, согласно ПУЭ, можно выбрать сечения проводов, используя расчеты методом экономической плотности тока [5].


,


где - расчетное значение тока в режиме наибольших нагрузок, проходящих по линии, А; - экономическая плотность тока для заданных условий работы линии, А/мм2 - для всех участков одинаковая (зависит от материала провода (Аl) и времени использования) ().

Расчетные сечения, номинальные значения сечений (с учетом минимальных допустимых значений по механической прочности) и другие технические данные проводов по участкам сводится в таблицу 5.

Расчет и производим по следующим формулам: ; .


Таблица 5. Технические данные проводов участков линии

участка (длина , км)

, мм2

, мм2

, Ом/км (при )

, Ом/км

, См/км

, Мвар/км

, Ом

, Ом

, мм

А-6 (20)

6-5 (10)

2-3 (25)

3-5 (40)

1-5 (21)

1-2 (20)

А-1 (19)

157,6

88,9

13,8

14,3

25,7

37,1

184,9

150/24

95/16

70/11

70/11

70/11

70/11

185/29

0, 198

0,306

0,428

0,428

0,428

0,428

0,162

0,420

0,434

0,444

0,444 0,444

0,444

0,413

0,0270

0,0261

0,0255

0,0255

0,0255

0,0255

0,0275

0,036

0,035

0,034

0,034

0,034

0,034

0,037

3,96

3,06

10,71

17,12

8,99

8,56

3,08

8,40

4,34

11,10

17,76

9,32

8,88

7,85

17,1

13,5

11,4

11,4

11,4

11,4

18,8


1.6 Определение токораспределения по участкам с учетом сопротивлений выбранных проводов без учета потерь мощности


Для выполнения данного пункта задания необходимо рассмотреть два контура и решить уравнения:


.


Для решения представим нашу схему сети 110 кВ (рис.2) в виде схемы замещения:


8,56 8,88


7,85 10,70


3,08 8,99 11,10

9,32

17,12

3,96

17,76


8,40 3,06 4,34



3. Схема замещения сети 110 кВ.


Таблица 6. Выраженные мощности участков

участка

Выраженные мощности участков


Составляем уравнения для первого контура:



Составляем уравнения для второго контура:



Решив полученную систему находим:


; ; ; .


Подставляя полученные значения в выраженные мощности участков, производим перерасчет сечений проводов, с учетом сопротивлений выбранных ранее проводов.


Таблица 7. Численные значения выражений мощностей участков

участка

Выраженные мощности участков



Зная мощности участков линий, определяем полную мощность и ток, протекающий по ним, а полученные данные сводим в таблицу 8.


Таблица 8. Расчетные данные

участка

Выраженная мощность

Полная мощность , МВА

Ток на участке , А


Согласно пересчитанному току на каждом из участков производим повторный выбор сечений проводов с учетом сопротивлений на данном участке. Следовательно, заполняем повторно таблицу с техническими данными проводов участков линий.


Таблица 9. Технические данные проводов участков линии

участка (длина , км)

, мм2

, мм2

, Ом/км (при )

, Ом/км

, См/км

, Мвар/км

, Ом

, Ом

, мм

А-6 (20)

6-5 (10)

2-3 (25)

3-5 (40)

1-5 (21)

1-2 (20)

А-1 (19)

155,55

86,30

14,30

13,88

27,34

37,65

187,05

150/24

95/16

70/11

70/11

70/11

70/11

185/29

0, 198

0,306

0,428

0,428

0,428

0,428

0,162

0,420

0,434

0,444

0,444 0,444

0,444

0,413

0,0270

0,0261

0,0255

0,0255

0,0255

0,0255

0,0275

0,036

0,035

0,034

0,034

0,034

0,034

0,037

3,96

3,06

10,7

17,12

8,99

8,56

3,08

8,4

4,34

11,1

17,76

9,32

8,88

7,85

17,1

13,5

11,4

11,4

11,4

11,4

18,8


1.7 Определение потерь в узлах с учетом потерь мощности


Для определения потери мощности на участках используем формулу:


,


где , - соответственно активная и реактивная составляющие мощности участка линии, взятые из таблицы 8, МВт, Мвар;

, - соответственно активная и реактивная составляющие сопротивления рассматриваемой линии.


;


Тогда мощность в начале участка А-6 будет:



Для определения мощности в начале участка 6-5 используем I закон Кирхгофа:


.


Аналогичным образом находим мощности в начале и конце каждого из участков, а также потери мощности на данных участках. Полученные данные сводим в таблицу 10.


Таблица 10. Рассчитанные значения мощностей в начале и в конце линий, потери мощности на участках

участка линии

Мощность в начале

Мощность в конце

Потери мощности


Для определения напряжений в узлах сети в качестве отправной точки используем напряжение опорного узла А: кВ. Тогда в узловой точке 6 на шинах трансформаторной подстанции напряжение , без учета поперечной составляющей напряжения, будет равно:


,

кВ.


Здесь - продольная составляющая падения напряжения.

кВ

кВ;

кВ;

кВ.


1.8 Выбор надбавок (ответвлений) трансформатора


Напряжение на шинах низшего напряжения ПС, приведенное к стороне высшего напряжения, можно получить, если из напряжения вычесть падение напряжения в трансформаторе (также без учета поперечной составляющей падения напряжения):


,


где - низшее напряжение, приведенное к высшей стороне;

- высшее напряжение на шинах ТП;

, - нагрузка подстанции соответственно активная и реактивная;

, - соответственно активное и реактивное сопротивление ТП.


кВ;

кВ;

кВ;

кВ;

кВ.


Определяем желаемое (расчетное) напряжение регулировочного ответвления обмотки высшего напряжения трансформатора:


,


где - номинальное напряжение обмотки низшего напряжения трансформатора;

- напряжение желаемое, которое необходимо поддерживать на шинах низшего напряжения в различных режимах работы сети.

Ведем расчет для режима наибольших нагрузок:


кВ;

кВ;

кВ;

кВ;

кВ.


Согласно полученным значениям по таблице10 [7] определяем действительное напряжение ответвления и соответствующую ему добавку напряжения:


кВ, %;

кВ, %;

кВ, %;

кВ, %;

кВ, %.


Определим действительное напряжение на шинах низшего напряжения подстанции:


.

кВ;

кВ;

кВ;

кВ;

кВ.


Для сети 10 кВ в режиме наибольших нагрузок и в послеаварийных режимах должно поддерживаться напряжение не менее 10,5 кВ, а в режиме наименьших нагрузок - не более 10 кВ. Допускается для сети 10 кВ, если в послеаварийных режимах невозможно обеспечить напряжение 10,5 кВ, другой уровень напряжения, но не ниже 10 кВ.

Согласно данному условию проверяем теперь и в последующем соблюдение его для , , соответственно.

В данном случае, в режиме наибольших нагрузок, данное условие соблюдается полностью.

Ведем расчет для режима наименьших нагрузок с учетом того, что напряжение в режиме наименьших нагрузок больше соответствующего напряжения в режиме наибольших нагрузок на 2%, Т.о.:


кВ;

кВ;

кВ;

кВ;

кВ.


Определяем желаемое (расчетное) напряжение регулировочного ответвления обмотки высшего напряжения трансформатора в режиме наименьших нагрузок:


кВ;

кВ;

кВ;

кВ;

кВ.


Согласно полученным значениям по таблице10 [7] определяем действительное напряжение ответвления и соответствующую ему добавку напряжения:


кВ, %;

кВ, %;

кВ, %;

кВ, %;

кВ, %;


Определим действительное напряжение на шинах низшего напряжения подстанции:


.

кВ;

кВ;

кВ;

кВ;

кВ.


В режиме наименьших нагрузок действительное напряжение меньше допустимо возможного 10 кВ, что соответствует поставленному выше условию.


1.9 Расчет послеаварийного режима


В соответствии с заданием создается аварийная ситуация, когда одна из линий выходит из строя. Расчет в послеаварийном режиме выполняется аналогично, как и в режиме нормальных нагрузок. Для расчета составляется схема замещения с нанесением исходных данных.


8,56 8,88


7,85 10,70



3,08 11,10


17,76

3,96


8,40 3,06 4,34 17,12





Рис.4. Схема замещения сети 110 кВ в послеаварийном режиме.


Необходимо произвести перерасчет токораспределения по участкам с учетом сопротивлений выбранных проводов без учета потерь мощности. Таким образом, необходимо рассмотреть один контур и решить для него систему уравнений:


.


Выразим мощности на участках с учетом разрыва линии 1-5.


Таблица 11. Выраженные мощности участков

участка

Выраженные мощности участков



;

;

;

;

.


Решив полученную систему находим: ; .


Подставляя полученные значения в выраженные мощности участков, производим перерасчет сечений проводов, с учетом сопротивлений выбранных ранее проводов в послеаварийном режиме.


Таблица 12. Численные значения выражений мощностей участков линии в послеаварийном режиме

участка

Выраженные мощности участков


Зная мощности участков линий, определяем полную мощность и ток, протекающий по ним в послеаварийном режиме линии, а полученные данные сводим в таблицу 13.


Таблица 13. Расчетные данные

участка

Выраженная мощность

Полная мощность , МВА

Ток на участке , А


Согласно пересчитанному току на каждом из участков рассчитываем сечения провода в послеаварийном режиме, но этот расчет никак не будет влиять на выбранные при нормальном режиме нормированные сечения проводов. Таким образом, заполняем таблицу с техническими данными проводов оставляя выбранные ранее нормированные значения сечений проводов.


Таблица 14. Технические данные проводов участков линии

участка (длина , км)

, мм2

, мм2

, Ом/км (при )

, Ом/км

, См/км

, Мвар/км

, Ом

, Ом

, мм

А-6 (20)

6-5 (10)

2-3 (25)

3-5 (40)

1-5 (21)

1-2 (20)

А-1 (19)

176,06

107,65

31,78

35,79

53,54

170,82

150/24

95/16

70/11

70/11

70/11

185/29

0, 198

0,306

0,428

0,428

0,428

0,162

0,420

0,434

0,444

0,444

0,444

0,413

0,0270

0,0261

0,0255

0,0255

0,0255

0,0275

0,036

0,035

0,034

0,034

0,034

0,037

3,96

3,06

10,7

17,12

8,56

3,08

8,4

4,34

11,1

17,76

8,88

7,85

17,1

13,5

11,4

11,4

11,4

18,8


Определяем потери в узлах с учетом потерь мощности для послеаварийного режима.


;


Тогда мощность в начале участка А-6 будет;


.


Для определения мощности в начале участка 6-5 используем I закон Кирхгофа:


.

Аналогичным образом находим мощности в начале и конце каждого из участков, а также потери мощности на данных участках. Полученные данные сводим в таблицу 15.


Таблица 15. Рассчитанные значения мощностей в начале и в конце линий, потери мощности на участках

участка линии

Мощность в начале

Мощность в конце

Потери мощности


Определяем напряжения в узлах сети, исходя из того, что кВ:


.


Рассчитываем напряжение на шинах низшего напряжения ПС, приведенное к стороне высшего напряжения, :


кВ;

кВ;

кВ;

кВ;

кВ.


Определяем желаемое (расчетное) напряжение регулировочного ответвления обмотки высшего напряжения трансформатора для послеаварийного режима:


кВ;

кВ;

кВ;

кВ;

кВ.


Согласно полученным значениям по таблице10 [7] определяем действительное напряжение ответвления и соответствующую ему добавку напряжения для послеаварийного режима:


кВ, %;

кВ, %;

кВ, %;

кВ, %;

кВ, %.


Определим действительное напряжение на шинах низшего напряжения подстанции:


кВ;

кВ;

кВ;

кВ;

кВ.


В послеаварийном режиме действительное напряжение больше допустимо возможного 10,5 кВ, что соответствует поставленному выше условию.


1.10 Анализ и заключение по результатам электрического расчета режимов работы сети


Полученные результаты расчетов в нормальных и послеаварийных режимах сводим в таблицу 16:


Таблица 16. Результаты расчетов различных режимов линии

Напряжение, В

Номер ТП

1

2

3

5

6

Режим наибольших нагрузок:

Расчетное регул-ое ответвление

Стандартное регул-ое ответвление

Приведенное напряжение на шинах низшего напряжения

Действительное напряжение на шинах низшего напряжения

Отклонение напряжения


110,28

108,9

105,27

10,63

5,34


115,53

115

110,28

10,55

0


115,15

115

109,92

10,51

0


111,30

110,9

106,24

10,54

3,56


116,24

115

110,96

10,61

0

Режим наименьших нагрузок:

Расчетное регул-ое ответвление

Стандартное регул-ое ответвление

на шинах низшего напряжения

на шинах низшего напряжения

Отклонение напряжения


118,12

119,1

107,38

9,92

+3,56


123,74

125,2

112,49

9,88

+8,9


123,33

125,2

112,12

9,85

+8,9


119,21

119,1

108,37

10,00

+3,56


124,50

125,2

113,18

9,94

+8,9

Послеаварийный режим:

Расчетное регул-ое ответвление

Стандартное регул-ое ответвление

на шинах низшего напряжения

на шинах низшего напряжения

Отклонение напряжения


110,73

108,9

105,70

10,67

5,34


115,61

115

110,36

10,56

0


114,80

113

109,61

10,67

1,78


111,15

110,9

106,10

10,52

3,56


116,21

115

110,93

10,61

0


2. Механический расчет воздушной линии 110 кВ


Проектирование линий электропередачи ведется согласно схеме развития электрической системы.

Для механического расчета выбранных сечений проводов, определения допустимых пролетов ВЛ необходимо знать климатические условия: толщину стенки гололеда, максимальную скорость ветра, высшую, низшую и среднегодовую температуру.

С целью сокращения объема курсового проекта, механический расчет ВЛ-110 кВ выполняется для линии, соединяющей две узловые точки (1-5).


2.1 Выбор материала и типа опор ВЛ-110 кВ


Опоры воздушных линий поддерживают провода на необходимом расстоянии от поверхности земли, проводов других линий, крыш зданий и т.п. Опоры должны быть достаточно механически прочными в различных метеорологических условиях (ветер, гололед и пр).


Рис.5. Промежуточная двухцепная опора ВЛ 110 кВ


В качестве материала для опор на сельских линиях широко применяют древесину деревьев хвойных пород, в первую очередь сосны и лиственницы, а затем пихты и ели (для линий напряжением 35 кВ и ниже). Для траверс и приставок опор ель и пихту применять нельзя.

Все большее распространение получают железобетонные опоры, изготавливаемые на специальных предприятиях. для напряжений не более 35 кВ линии изготавливают на вибрированных стойках, на двухцепных линиях (рис.5) 35 и 110 кВ - также на центрифугированных стойках. Их срок службы в среднем в два раза выше, чем на деревянных, хорошо пропитанных опорах. Отпадает необходимость в использовании древесины, повышается надежность электроснабжения. Железобетонные конструкции обладают высокой механической прочностью и долговечностью, но недостатком их является большая масса.

Отсутствие высокопрочных сталей и бетона соответствующих марок долгое время не позволяло применять железобетонные опоры в строительстве высоковольтных линий, для которого транспортабельность конструкции играет решающую роль.

Таким образом, принимаем к установке железобетонные двухцепные опоры.


2.2 Определение удельных нагрузок на провода


Удельные нагрузки, т.е. нагрузки, возникающие в 1 м длины линии и 1 мм2 сечения провода от веса провода, гололеда и давления ветра, рассчитывают исходя из условия:

нагрузка по длине провода в пролете распределяется равномерно;

порывы ветра отсутствуют.

По начальным условиям из справочной литературы [1,2,5] выписываем все необходимые данные (для провода АС 70/11):

скорость напора ветра: даН/м2;

толщина стенки гололеда: мм;

модуль упругости: даН/мм2;

температурный коэффициент линейного удлинения: 1/С0;

предельная нагрузка: