Выбор и расчет устройств релейной защиты (150182)

Посмотреть архив целиком

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«Амурский государственный университет»


Кафедра энергетики



КУРСОВОЙ ПРОЕКТ

По дисциплине "Релейная защита и автоматика"



На тему:

"Выбор и расчет устройств релейной защиты"
















Благовещенск 2006


Задание


Рисунок 1. Исходная схема


Типы выключателей на напряжении 35 кВ – МКП-35;

Напряжение оперативного тока: на ПС1 – 110 В =, на ПС2 и ПС3 – 110 В ~;

Параметры элементов сети:

тип силового трансформатора, установленного на ПС ТДН – 10000/35;

длины линий:

Л1 – 37 км, Л2 – 35 км, Л3 – 34 км, Л4 – 33 км




Реферат


Работа 24 с., 6 рисунков, 1 таблицы, 5 источников. Токи короткого замыкания, ступени защиты, защиты трансформатора, защиты линии, сопротивления обратной и нулевой последовательностей, расчётная схема замещения, комплект защиты

В ходе выполнения курсового проекта был произведён выбор и расчёт основных и резервных защит линий и двухобмоточного трансформатора в рассматриваемой сети. Рассмотрены действия защит при различных повреждениях. Даны краткие характеристики защит.




Содержание


Введение

1. Расчёт токов короткого замыкания

1.1 Расчёт сопротивлений в схеме замещения сети

1.2 Расчёт токов КЗ

2. Выбор принципов релейной защиты

3. Защита линии

3.1 Общие сведения

3.2 Токовая отсечка

3.3 Максимальная токовая защита линий

4. Защита трансформатора

4.1 Продольная дифференциальная защита

4.2 Максимальная токовая защита трансформатора

4.3 Защита от перегрузки

4.4 Газовая защита

Заключение

Библиографический список




Введение


Любые электрические системы должны быть надёжными, экономичными, удобными и безопасными в эксплуатации и обеспечивать потребителей электроэнергией требуемого качества. Большую роль в выполнении этих требований играют устройства релейной защиты и автоматики.

Проектирование релейной защиты и автоматики представляет собой сложный процесс выработки и принятия решений по выбору принципов выполнения релейной защиты. Также решаются вопросы эффективного функционирования устройств релейной защиты и автоматики всех элементов защищаемой схемы, начиная с выбора видов и расчёта уставок проектируемых устройств и кончая правильным их подключением к цепям оперативного тока и к трансформаторам тока и напряжения.

Выполняя курсовую работу по курсу «Релейная защита и автоматика», студент закрепляет полученные знания, а также получает практические навыки проектирования РЗиА, которые необходимы для дальнейшего успешного выполнения курсовых и дипломного проектов.




1. Расчёт токов короткого замыкания


    1. Расчёт сопротивлений


Представим рассматриваемый участок сети на рисунке 1 своей схемой замещения (рис. 2).










Рисунок 2 – Схема замещения


Расчёт произведём в именованных единицах.

Сопротивление трансформаторов:


Ом


Ом


Сопротивление линии:

Ом

Ом

Ом

Ом

Сопротивление системы:



Получив значения для всех сопротивлений перейдём к расчёту токов КЗ.


1.2 Расчёт токов КЗ


Проведём расчёт тока трёхфазного КЗ в точке К1 (указана на рисунке 2).






На стороне 10 кВ:



На стороне 10 кВ:



2. Выбор принципов релейной защиты и автоматики


В соответствии с ПУЭ на двухобмоточных трансформаторах устанавливаются:

а. Для защиты от многофазных КЗ в обмотках и на их выводах – продольная дифференциальная защита, выполняемая токовым реле, отстроенным от бросков тока намагничивания (дифференциальная отсечка), в случаях, когда такая защита удовлетворяет требованиям чувствительности (КЧ > 2) или в случае недостаточной чувствительности, токовыми реле, включенными в дифференциальную цепь через промежуточные насыщающиеся трансформаторы тока (дифференциальная защита с реле РНТ-565);

б. Для защиты от токов в обмотках, обусловленных внешними КЗ и резервирования действия защиты от внутренних повреждений на трансформаторах с односторонним питанием – максимальная токовая защита без пуска или с пуском минимального напряжения (при недостаточной чувствительности без пуска напряжения), устанавливаемая со стороны питания. Защиты, выполненные согласно пунктам «а» и «б», должны действовать на отключение всех выключателей трансформатора.

в. Для защиты от токов в обмотках, обусловленных перегрузкой – токовая защита, выполняемая с одним токовым реле с действием на сигнал с выдержкой времени.

г. Для защиты от витковых замыканий в обмотках и понижения уровня масла для трансформаторов мощностью 1000 кВА и более – газовая защита, действующая на сигнал при слабом газообразовании и понижении уровня масла и на отключение при интенсивном газообразовании. Допускается выполнять газовую защиту с действием на отдельный сигнал и при интенсивном газообразовании при наличии на трансформаторе дифференциальной защиты или токовой отсечки, а также на трансформаторах, не имеющих выключателей со стороны питания.

д. Для сигнализации о повышении температуры масла ставится термосигнализатор с действием на сигнал.

На всех линиях 35 кВ устанавливаем ТО и МТЗ, кроме того, на линиях предусмотрено автоматическое повторное включение (АПВ).

На всех линиях 10 кВ – МТЗ и токовая отсечка, возможна отсечка с выдержкой времени, кроме этого предусматривается защита от замыканий на землю.




3. Защита линий


    1. Общие сведения


Согласно [4] выделим на защищаемых линиях следующие виды защит – основные и резервные.

Основными защитами на всех ВЛ в схеме будут:

  • токовая отсечка с выдержкой и без выдержки времени.

Вспомогательной защитой будет:

  • МТЗ.


3.2 Токовая отсечка


Токовая отсечка считается эффективной и разрешается к установке, если может защитить более 20% общей длины линии. Токовая отсека выполняется без выдержки времени и в сочетании с МТЗ позволяет выполнить простую и недорогую защиту.

Недостатком токовой отсечки можно считать то, что дальний конец линии и шины приемной ПС в зону ее работы не попадают. КЗ на этом участке может отключить только МТЗ с большой выдержкой времени.

Ток срабатывания токовой отсечки:



где - коэффициент надёжности (для реле РТ-40 – 1.2–1.3);

- максимальный ток в фазе линии при КЗ на шинах противоположной ПС.

Проверим токовую отсечку для линии Л1 и Л2 35 кВ.

А

А

Токовая отсечка должна срабатывать на минимальные токи при КЗ, этими токами для сетей 35 кВ с изолированной нейтралью является двухфазный ток КЗ: А


А


Для полученных токов строится зависимость I=f(l), которая показывает как изменяется ток по всей длине линии. График показывает, что токовая отсечка на Л1 защищает 26,5 км, а на Л2 – 25,5 км.

Из этого следует, что токовая отсечка защищает более 20% линии.

Зона действия отсечки определяется обычно графическими построениями как точка пересечения кривой изменения тока КЗ в минимальном и максимальном режимах работы сети в зависимости от длины лини или её реактивного сопротивления и прямой тока срабатывания защиты. Отсечка считается эффективной, если зона её действия охватывает не менее 20–25% длины линии. Графические построения показаны на рис. 4.


Рисунок 3 – Мгновенная токовая отсечка 5 мм-2 км; 10 мм-1 кА


Минимальные токи это токи двухфазного КЗ. Ток двухфазного КЗ связан с трёхфазным следующим соотношением:


(16)


Из графических построений видно, что мгновенная токовая отсечка защищает большую часть линии, что говорит об эффективности использования её на данных линиях.

Поскольку зона действия токовой отсечки не выходит за пределы защищаемой линии, она выполняется без выдержки времени . Отсюда и название «мгновенная токовая отсечка».


3.3 Максимальная токовая защита линий


Максимальные токовые защиты со ступенчатой выдержкой времени применяются на одиночных линиях в радиальных сетях в качестве основных защит для сетей 2 – 10 кВ и резервных для сетей напряжением 110 – 330 кВ, а также для защиты генераторов и трансформаторов.

Первичный ток срабатывания максимальной токовой защиты (МТЗ) вычисляется по формуле:


(17)


где КН – коэффициент надежности (запаса), равен 1,11,3;

КСАМ – коэффициент самозапуска, равен 12 (при отсутствии точных данных по сети принимается равным 1);

КВ – коэффициент возврата, принимается по каталогу для принятого типа реле;

Iраб.макс – максимальное значение рабочего тока, протекающего по линии, с учетом возможных эксплуатационных перегрузок;

Определяется чувствительность защиты в основной зоне:

Коэффициент чувствительности:




Коэффициент чувствительности в зоне резервирования:





Все условия выполняются.

Вторичный ток срабатывания отсечки (ток срабатывания токовых реле) определяется по формуле:


Случайные файлы

Файл
19902.rtf
158179.rtf
Graduate work.doc
48627.rtf
146860.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.